Skip to main content

Advertisement

Log in

Effects of 5-aminolevulinic acid treatment on photosynthesis of strawberry

  • Original Paper
  • Published:
Photosynthetica

Abstract

Effects of root treatment with 5-aminolevulinic acid (ALA) on leaf photosynthesis in strawberry (Fragaria ananassa Duch.) plants were investigated by rapid chlorophyll fluorescence and modulated 820 nm reflection using 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV). Our results showed that ALA treatments increased the net photosynthetic rate and decreased the intercelluar CO2 concentration in strawberry leaves. Under DCMU treatment, trapping energy for QA reduction per PSII reaction center increased greatly, indicating DCMU inhibited electron transfer from QA . The maximum photochemical efficiency of PSII (Fv/Fm) decreased under the DCMU treatment, while a higher Fv/Fm remained in the ALA-pretreated plants. Not only the parameters related to a photochemical phase, but also that one related to a heat phase remained lower after the ALA pretreatment, compared to the sole DCMU treatment. The MV treatment decreased PSI photochemical capacity. The results of modulated 820 nm reflection analysis showed that DCMU and MV treatments had low re-reduction of P700 and plastocyanin (PSI). However, the strawberry leaf discs pretreated with ALA exhibited high re-reduction of PSI under DCMU and MV treatments. The results of this study suggest that the improvement of photosynthesis by ALA in strawberry was not only related to PSII, but also to PSI and electron transfer chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

5-aminolevulinic acid

C i :

intercellular CO2 concentration

Chl:

chlorophyll

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethyl urea

E :

transpiration rate

Fj and Fi :

the fluorescence intensity at 2 ms (J-step) and 30 ms (I-step)

Fm :

the maximum fluorescence intensity

Fo :

the minimum fluorescence intensity

Fv/Fm :

maximal quantum yield of PSII photochemistry

g s :

stomatal conductance

MR:

modulated 820 nm reflection

MRo :

value of modulated 820 nm reflection at the onset of red light illumination

MV:

methyl viologen

P680:

PSII reaction center

P700:

PSI reaction center

P N :

net photosynthetic rate

PC:

plastocyanin

PQH2 :

plastoquinol

RC/ABS:

QA reducing reaction centers per PSII antenna chlorophyll

VJ :

the relative variable fluorescence intensities at the J-step

VI :

the relative variable fluorescence intensities at the I-step

VPSI :

maximum slope of decrease of MR/MRo

VPSII-PSI :

maximum slope of increase of MR/MRo

References

  • Allen R.D., Webb R.P., Schake S.A.: Use of transgenic plants to study antioxidant defences. — Free Radical Biol. Med. 23: 473–479, 1997.

    Article  CAS  Google Scholar 

  • An Y.Y., Li J., Duan C.H. et al.: 5-aminolevulinic acid thins pear fruits by inhibiting pollen tube grown via Ca2+-ATPasemediated Ca2+ efflux. — Front. Plant Sci. 7: doi: 10.3389, 2016.

    Google Scholar 

  • Appenroth K.J., Stöckel J., Srivastava A. et al.: Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. — Environ. Pollut. 115: 49–64, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Gao J., Li P.M., Ma F.W. et al.: Photosynthetic performance during leaf expansion in Malus micromalus probed by chlorophyll a fluorescence and modulated 820 nm reflection. — J. Photoch. Photobio. B 137: 144–150, 2014.

    Article  CAS  Google Scholar 

  • Goltsev V., Zaharieva I., Chernev P. et al.: Drought induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. — Biochim. Biophys. Acta 1817: 1490–1498, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Han B.M., Li H., Gao X.Y. et al. [Research on photosynthetic characteristics of strawberry seedlings in vitro propagation.] — J. Fruit Sci. 4: 559–563, 2009. [In Chinese]

    Google Scholar 

  • Hotta Y., Tanaka T., Takaoka H. et al.: New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. — Biosci. Biotech. Bioch. 61: 2025–2028, 1997.

    Article  CAS  Google Scholar 

  • Jiang C.D., Shi L., Gao H.Y. et al.: Development of photosystems 2 and 1 during leaf growth in grapevine seedlings probed by chlorophyll a fluorescence transient and 820 nm transmission in vivo. — Photosynthetica 44: 454–463, 2006.

    Article  CAS  Google Scholar 

  • Komenda J., Koblížek M., Prášil O.: Characterization of processes responsible for the distinct effect of herbicides of DCMU and BNT on Photosystem II photoinactivation in cells of the cyanobacterium Synechococcus PCC 7942. — Photosynth. Res. 63: 135–144, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Kouřil R., Lazár D., Lee H. et al.: Moderately elevated temperature eliminates resistance of rice plants with enhanced expression of glutathione reductase to intensive photooxidative stress. — Photosynthetica 41: 571–578, 2003.

    Article  Google Scholar 

  • Kreslavski V.D., Kosobryukhov A.A., Shmarev A.N. et al.: Introduction of the Arabidopsis PHYB gene increases resistance of photosynthetic apparatus in transgenic Solanum tuberosum plants to UV-B radiation. — Russ. J. Plant Physl+ 62: 204–209, 2015.

    Article  CAS  Google Scholar 

  • Lazár D.: Modelling of light-induced chlorophyll a fluorescence rise (O-J-I-P transient) and changes in 820 nm–transmittance signal of photosynthesis. — Photosynthetica 47: 483–498, 2009.

    Article  Google Scholar 

  • Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. — Funct. Plant Biology 33: 9–30, 2006.

    Article  Google Scholar 

  • Li P.M., Ma F.W.: Different effects of light irradiation on the photosynthetic electron transport chain during apple tree leaf dehydration. — Plant Physiol. Bioch. 55: 16–22, 2012.

    Article  CAS  Google Scholar 

  • Liu W.Q., Kang L., Wang L.J.: [Effect of 5-aminolevulinic acid (ALA) on photosynthesis and its relationship with antioxidant enzymes of strawberry leaves.] — Acta Bot. Boreal. Occident. Sin. 26: 57–62, 2006. [In Chinese]

    CAS  Google Scholar 

  • Memon S.A., Hou X.L., Wang L.J. et al.: Promotion effect of 5-aminolevulinic acid on chlorophyll, antioxidant enzymes and photosynthesis of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). — Acta Physiol. Plant. 31: 51–57, 2009.

    Article  CAS  Google Scholar 

  • Nishihara E., Kondo K., Parvez M.M. et al.: Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). — J. Plant Physiol. 160: 1085–1091, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Oukarroum A., Goltsev V., Strasser R.J.: Temperature effects on pea plants probed by simultaneous measurements of the kinetics of prompt fluorescence, delayed fluorescence and modulated 820 nm reflection. — PLoS One 8: e59433, 2013.

    Article  Google Scholar 

  • Panda D., Rao D.N., Sharma S.G. et al.: Submergence effects on rice genotypes during seedling stage: Probing of submergence driven changes of photosystem 2 by chlorophyll a fluorescence induction 0-J-I-P transients. — Photosynthetica 44: 69–75, 2006.

    Article  CAS  Google Scholar 

  • Phung T.H., Jung S.: Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen. — Biochem. Bioph. Res. Co. 459: 346–351, 2015.

    Article  CAS  Google Scholar 

  • Schansker G., Srivastava A., Govindjee et al.: Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. — Funct. Plant Biol. 30: 785–796, 2003.

    Article  CAS  Google Scholar 

  • Schansker G., Tóth S.Z., Kovács L. et al.: Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. — Biochim. Biophys. Acta 1807: 1032–1043, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Schansker G., Tóth S.Z., Strasser R.J.: Methylviologen and dibromothymoquinone treatments pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. — Biochim. Biophys. Acta 1706: 250–261, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Sowik I., Markiewicz M., Michalczuk L.: Stability of Verticillium dahliae resistance in tissue culture-derived strawberry somaclones. — HortScience 42: 141–148, 2015.

    Google Scholar 

  • Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. — J. Photoch. Photobio. B 104: 36–57, 2011.

    Article  Google Scholar 

  • Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP test. — In: Mathis P. (ed).: Photosynthesis: From Light to Biosphere. Pp. 977–980. KAP Press, Dordrecht 1995.

    Google Scholar 

  • Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor & Francis Press, London–New York 2000.

    Google Scholar 

  • Strasser R.J., Tsimilli-Michael M., Qiang S. et al.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820 nm reflection changes during drying and after rehydration of the resurrenction plant Haberlea rhodopensis. — Biochim. Biophys. Acta 1797: 1313–1326, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y.P., Zhang Z.P., Wang L.J.: Promotion of 5-aminolevulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings grown under shade condition. — Photosynthetica 47: 347–354, 2009.

    Article  CAS  Google Scholar 

  • Thiele A., Herold M., Lenk I. et al.: Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. — Plant Physiol. 120: 73–81, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth S.Z., Schansker G., Strasser R.J.: A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. — Photosynth. Res. 93: 193–203, 2007.

    Article  PubMed  Google Scholar 

  • von Wettstein D., Gough S., Kannangara C.G.: Chlorophyll biosynthesis. — Plant Cell 7:1039–1057, 1995.

    Article  Google Scholar 

  • Wang L.J., Jiang W.B., Huang B.J.: Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress condition. — Physiol. Plantarum 121: 258–264, 2004.

    Article  CAS  Google Scholar 

  • Wang L.J., Jiang W.B., Zhang Z. et al.: [Biosynthesis and physiological activities of 5-aminolevulinic acid and its potential application in agriculture.] — Plant Physiol. Comm. 39: 185–192, 2003. [In Chinese]

    Google Scholar 

  • Yan K., Chen P., Shao H.B. et al.: Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. — PLoS One 8: e62100, 2013.

    Article  Google Scholar 

  • Yan K., Chen P., Shao H.B. et al.: Photosynthetic characterization of Jerusalem artichoke during leaf expansion. — Acta Physiol. Plant. 34: 353–360, 2012.

    Article  CAS  Google Scholar 

  • Zhao Y.Y., Yan F., Hu L.P. et al.: [Effect of 5-aminolevulinic acid on photosynthetic characteristics of tomato seedlings under NaCl stress.] — Chin. J. Appl. Ecol. 25: 2919–2926, 2014. [In Chinese]

    CAS  Google Scholar 

  • Zhao Y.Y., Yan F., Hu L.P. et al.: Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress. — Genet. Mol. Res. 14: 6401–6412, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Zushi K., Kajiwara S., Matsuzoe N.: Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. — Sci. Hortic-Amsterdam 148: 39–46, 2012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. B. Guo or L. J. Wang.

Additional information

Acknowledgements: This research was supported by Jiangsu Agriculture Science and Technology Innovation Fund (JASTIF), CX(11)4004, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y.P., Liu, J., Cao, R.X. et al. Effects of 5-aminolevulinic acid treatment on photosynthesis of strawberry. Photosynthetica 55, 276–284 (2017). https://doi.org/10.1007/s11099-016-0667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0667-y

Additional key words

Navigation