Skip to main content
Log in

Ozone sensitivity of four Pakchoi cultivars with different leaf colors: physiological and biochemical mechanisms

  • Original Paper
  • Published:
Photosynthetica

Abstract

Ozone (O3) is important air pollutant inducing severe losses of horticultural production. Cultivars of the same species, but with different leaf colors, may differ in their ozone sensitivity. However, it has not been clarified yet if different leaf coloration influences such a sensitivity. In this study, two purple-leafed and two green-leafed cultivars of Pakchoi were selected for ozone fumigation (240 ± 20 nmol mol–1, 09:00–16:00 h). Elevated O3 decreased chlorophyll content, increased anthocyanin (Ant) content, damaged cell membrane integrity, enhanced antioxidative enzyme activities, depressed photosynthetic rate (P N) and stomatal conductance (g s), inhibited maximal quantum yield (Fv/Fm) and effective quantum yield [YII] of PSII photochemistry, and caused visible injury. Purple-leafed cultivars with higher Ant contents were more tolerant than green-leafed cultivars as indicated by lower relative enhancement in malondialdehyde content and lower relative losses in P N, g s, Fv/Fm, and YII. The higher ability to synthesize Ant in the purple-leafed cultivars contributed to their higher photoprotective ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ant:

anthocyanins

APX:

ascorbate peroxidase

CAT:

catalase

Car:

carotenoids

CF:

charcoal-filtered air

C i :

intercellular CO2 concentration

Chl:

chlorophyll

E:

transpiration rate

EC:

electrical conductivity

ETR:

electron transport rate

Fo :

minimal fluorescence of the dark-adapted state

Fm :

maximal fluorescence of the dark-adapted state

FM:

fresh mass

Fv/Fm :

maximal efficiency of PSII photochemistry in the dark-adapted state

g s :

stomatal conductance

JG:

Jingguan

MDA:

malondialdehyde

MG:

Meiguan

NPQ:

nonphotochemical quenching

OTCs:

open top chambers

P N :

net photosynthetic rate

POD:

peroxidase

qL:

coefficient of photochemical fluorescence quenching based on lake model

qN:

coefficient of nonphotochemical fluorescence quenching

qP:

coefficient of photochemical fluorescence quenching based on puddle model

ROS:

reactive oxygen species

SOD:

superoxide dismutase

VOCs:

volatile organic compounds

YII :

the effective quantum yield of PSII photochemistry

YNPQ :

quantum yield of light-induced nonphotochemical fluorescence quenching

YNO :

quantum yield of nonregulated heat dissipation and fluorescence emission

ZY:

Ziyu

ZZ:

Zizuan

References

  • Abassi N.A., Kushad M.M., Endress A.G.: Active oxygen scavenging enzymes activities in developing apple flowers and fruits.–Sci. Hortic.-Amsterdam 74: 183–194, 1998.

    Article  Google Scholar 

  • Ashmore M.: Assessing the future global impacts of ozone on vegetation.–Plant Cell Environ. 28: 949–964, 2005.

    Article  CAS  Google Scholar 

  • Bender J., Weigel H.J., Wegner U. et al.: Response of cellular antioxidants to ozone in wheat flag leaves at different stages of plant development.–Environ. Pollut. 84: 15–21, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Biswas D.K., Xu H., Li Y.G. et al.: Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/relatives.–J. Exp. Bot. 59: 951–963, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Black V.J., Stewart C.A., Roberts J.A. et al.: Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin Fast Plants).–New Phytol. 176: 150–163, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Booker F., Muntifering R., McGrath M. et al.: The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species.–J. Integr. Plant Biol. 51: 337–351, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Bortolin R.C., Caregnato F.F., Divan A.M. et al.: Effects of chronic elevated ozone concentration on the redox state and fruit yield of red pepper plant Capsicum baccatum.–Ecotox. Environ. Safe. 100:114–121, 2014.

    Article  CAS  Google Scholar 

  • Bussotti F., Schaub M., Cozzi A. et al.: Assessment of ozone visible symptoms in the field: perspectives of quality control.–Environ. Pollut. 125: 81–89, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Calatayud A., Barreno E.: Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation.–Plant Physiol. Bioch. 42: 549–555, 2004.

    Article  CAS  Google Scholar 

  • Cao X.C., Wu L.H., Yuan L. et al.: Uptake and uptake kinetics of nitrate, ammonium and glycine by pakchoi seedlings (Brassica Campestris L. ssp. Chinensis L. Makino).–Sci. Hortic.-Amsterdam 186: 247–253, 2015.

    Article  CAS  Google Scholar 

  • Castagna A., Ranieri A.: Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment.–Environ. Pollut. 157: 1461–1469, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Contran N., Poletti E., Manning W.J. et al.: Ozone sensitivity and ethylenediurea protection in ash trees assessed by JIP chlorophyll a fluorescence transient analysis.–Photosynthetica 47: 68–78, 2009.

    Article  CAS  Google Scholar 

  • De Bock M., Ceulemans R., Horemans N. et al.: Photosynthesis and crop growth of spring oilseed rape and broccoli under elevated tropospheric ozone.–Environ. Exp. Bot. 82: 28–36, 2012.

    Article  Google Scholar 

  • Díaz-Vivancos P., Clemente-Moreno M.J., Rubio M. et al.: Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus.–J. Exp. Bot. 59: 2147–2160, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feild T.S., Lee D.W., Holbrook N.M.: Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of redosier dogwood.–Plant Physiol. 127: 566–574, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z., Sun J., Wan W. et al.: Evidence of widespread ozoneinduced visible injury on plants in Beijing, China.–Environ. Pollut. 193: 296–301, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Foyer C.H., Lelandais M., Kunert K.J.: Photooxidative stress in plants.–Physiol. Plantarum 92: 696–717, 1994.

    Article  CAS  Google Scholar 

  • Gould K.S., Neill S.O., Vogelmann T.C.: A unified explanation for anthocyanins in leaves?–Adv. Bot. Res. 37: 167–192, 2002.

    Article  CAS  Google Scholar 

  • Gould K.S.: Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves.–J. Biomed. Biotechnol. 2004: 314–320, 2004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guidi L., Di Cagno R., Soldatini G.F.: Screening of bean cultivars for their response to ozone as evaluated by visible symptoms and leaf chlorophyll fluorescence.–Environ. Pollut. 107: 349–355, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Hao Z., Chang J., Xu Z.: [Plant Physiology Experiment.] Pp. 106–108. Harbin Inst. Technol. Press, Harbin 2004 [In Chinese]

    Google Scholar 

  • Hayes F., Jones M.L.M., Mills G. et al.: Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone.–Environ. Pollut. 146: 754–762, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Hughes N.M., Smith W.K.: Attenuation of incident light in Galax urceolata (Diapensiaceae): concerted influence of adaxial and abaxial anthocyanic layers on photoprotection.–Am. J. Bot. 94: 784–790, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Inada H., Kondo T., Akhtar N. et al: Relationship between cultivar difference in the sensitivity of net photosynthesis to ozone and reactive oxygen species scavenging system in Japanese winter wheat (Triticum aestivum).–Physiol. Plantarum 146: 217–227, 2012.

    Article  CAS  Google Scholar 

  • Kefauver S.C., Peñuelas J., Ribas A. et al: Using Pinus uncinata to monitor tropospheric ozone in the Pyrenees.–Ecol. Indic. 36: 262–271, 2014.

    Article  CAS  Google Scholar 

  • Li Y., Li C., Zheng Y. et al.: Cadmium pollution enhanced ozone damage to winter wheat: biochemical and physiological evidences.–J. Environ. Sci. 23: 255–265, 2011.

    Article  CAS  Google Scholar 

  • Li Y., Song Y.P., Shi G.J. et al.: Response of antioxidant activity to excess copper in two cultivars of Brassica campestris ssp. chinensis Makino.–Acta Physiol. Plant. 31: 155–162, 2009.

    Article  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.–Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Lin Z., Li S., Chang D. et al.: [The changes of pigments, phenolics contents and activities of polyphenol oxidase and phenylalanine ammonia-lyse in pericarp of postharvest litchi fruit.]–Acta Bot. Sin. 30: 40–45, 1988. [In Chinese]

    CAS  Google Scholar 

  • Liu S., Dong Y., Xu L. et al.: Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings.–Plant Growth Regul. 73: 67–78, 2014.

    Article  CAS  Google Scholar 

  • Overmyer K., Brosché M., Kangasjärvi J.: Reactive oxygen species and hormonal control of cell death.–Trends Plant Sci. 8: 335–342, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Owens TG.: In vivo chlorophyll fluorescence as a probe of photosynthetic physiology.–In: Alscher R.G., Wellburn A.R. (ed.): Plant Responses to the Gaseous Environment. Pp. 195–217. Chapman & Hall, London 1994.

    Chapter  Google Scholar 

  • Paoletti E., Schaub M., Matyssek R. et al.: Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.–Environ. Pollut. 158: 1986–1989, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Pleijel H., Danielsson H.: Growth of 27 herbs and grasses in relation to ozone exposure and plant strategy.–New Phytol. 135: 361–367, 1997.

    Article  Google Scholar 

  • Royal Society: Ground-level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications.–Science Policy, Report. 1508, 2008.

    Google Scholar 

  • Rozpadek P., Nosek M., Slesak I. et al.: Ozone fumigation increases the abundance of nutrients in Brassica vegetables: broccoli (Brassica oleracea var. italica) and Chinese cabbage (Brassica pekinensis).–Eur. Food Res. Technol. 240: 459–462, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Ryang S.Z., Woo S.Y., Kwon S.Y. et al.: Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of Liriodendron tulipifera under elevated ozone.–Photosynthetica 47: 19–25, 2009.

    Article  CAS  Google Scholar 

  • Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview.–In: Papageorgiou G.C., (ed.): Chlorophyll a Fluorescence. A Signature of Photosynthesis. Pp. 279–319. Springer, Dordrecht 2004.

    Chapter  Google Scholar 

  • Singh P., Singh S., Agrawal S.B. et al.: Assessment of the interactive effects of ambient O3 and NPK levels on two tropical mustard varieties (Brassica campestris L.) using opentop chambers.–Environ. Monit. Assess. 184: 5863–5874, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Singh S., Bhatia A., Tomer R. et al.: Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.).–Environ. Monit. Assess. 185: 6517–6529, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Syeed S., Anjum N.A., Nazar R. et al.: Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance.–Acta Physiol. Plant. 33: 877–886, 2011.

    Article  CAS  Google Scholar 

  • Takahashi M.A., Asada K.: Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids.–Arch. Biochem. Biophys. 226: 558–566, 1983.

    Article  CAS  PubMed  Google Scholar 

  • Thwe A.A., Vercambre G., Gautier H. et al.: Dynamic shoot and root growth at different developmental stages of tomato (Solanum lycopersicum Mill.) under acute ozone stress.–Sci. Hortic.-Amsterdam 150: 317–325, 2013.

    Article  CAS  Google Scholar 

  • Tripathi R., Agrawal S.B.: Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters.–Ecotox. Environ. Safe. 85: 1–12, 2012.

    Article  CAS  Google Scholar 

  • Vandermeiren K., De Bock M., Horemans N. et al.: Ozone effects on yield quality of spring oilseed rape and broccoli.–Atmos. Environ. 47: 76–83, 2012.

    Article  CAS  Google Scholar 

  • von Caemmerer S., Farquhar G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.–Planta 153: 376–387, 1981.

    Article  Google Scholar 

  • Wang X., Zheng Q., Feng Z. et al.: Comparison of a diurnal vs steady-state ozone exposure profile on growth and yield of oilseed rape (Brassica napus L.) in open-top chambers in the Yangtze Delta, China.–Environ. Pollut. 156: 449–453, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Weber J.A., Clark C.S., Hogsett W.E.: Analysis of the relationships among O3 uptake, conductance, and photosynthesis in needles of Pinus ponderosa.–Tree Physiol. 13: 157–172, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Whaley A., Sheridan J., Safari S. et al.: RNA-seq analysis reveals genetic response and tolerance mechanisms to ozone exposure in soybean.–BMC Genomics 16: 426, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu H., Chen S.B., Biswas D.K. et al.: Photosynthetic and yield responses of an old and a modern winter wheat cultivars to short-term ozone exposure.–Photosynthetica 47: 247–254, 2009.

    Article  CAS  Google Scholar 

  • Yang Y., Shi R., Wei X. et al.: Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Bobr.–Plant Cell Tiss. Organ Cult. 102: 387–395, 2010.

    Article  CAS  Google Scholar 

  • Zhang L., Xu H., Yang J.C. et al.: Photosynthetic characteristics of diploid honeysuckle (Lonicera japonica Thumb.) and its autotetraploid cultivar subjected to elevated ozone exposure.–Photosynthetica 48: 87–95, 2010.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Elena Paoletti at the National Research Council of Italy and Dr. Caihong Li at the Chinese Academy of Sciences for their kindly revisions of this manuscript. This study was financially supported by National Natural Science Foundation of China (31401895), Natural Science Foundation of Heilongjiang Province of China (C201221), and ‘Young Talents’ project and Doctoral Fund of Northeast Agricultural University of China (14Q10, 2012RCB36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xiao, S., Chen, Y.J. et al. Ozone sensitivity of four Pakchoi cultivars with different leaf colors: physiological and biochemical mechanisms. Photosynthetica 55, 478–490 (2017). https://doi.org/10.1007/s11099-016-0661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0661-4

Additional key words

Navigation