Skip to main content
Log in

Modelling photosynthesis in shallow algal production ponds

  • Published:
Photosynthetica

Abstract

Shallow ponds with rapidly photosynthesising cyanobacteria or eukaryotic algae are used for growing biotechnology feedstock and have been proposed for biofuel production but a credible model to predict the productivity of a column of phytoplankton in such ponds is lacking. Oxygen electrodes and Pulse Amplitude Modulation (PAM) fluorometer technology were used to measure gross photosynthesis (P G) vs. irradiance (E) curves (P G vs. E curves) in Chlorella (chlorophyta), Dunaliella salina (chlorophyta) and Phaeodactylum (bacillariophyta). P G vs. E curves were fitted to the waiting-in-line function [P G = (P Gmax × E/Eopt) × exp(1 — E/Eopt)]. Attenuation of incident light with depth could then be used to model P G vs. E curves to describe P G vs. depth in pond cultures of uniformly distributed planktonic algae. Respiratory data (by O2-electrode) allowed net photosynthesis (P N) of algal ponds to be modelled with depth. Photoinhibition of photosynthesis at the pond surface reduced P N of the water column. Calculated optimum depths for the algal ponds were: Phaeodactylum, 63 mm; Dunaliella, 71 mm and Chlorella, 87 mm. Irradiance at this depth is ≈ 5 to 10 μmol m−2 s−1 photosynthetic photon flux density (PPFD). This knowledge can then be used to optimise the pond depth. The total net P N [μmol(O2) m−2 s−1] were: Chlorella, ≈ 12.6 ± 0.76; Dunaliella, ≈ 6.5 ± 0.41; Phaeodactylum ≈ 6.1 ± 0.35. Snell’s and Fresnel’s laws were used to correct irradiance for reflection and refraction and thus estimate the time course of P N over the course of a day taking into account respiration during the day and at night. The optimum P N of a pond adjusted to be of optimal depth (0.1–0.5 m) should be approximately constant because increasing the cell density will proportionally reduce the optimum depth of the pond and vice versa. Net photosynthesis for an optimised pond located at the tropic of Cancer would be [in t(C) ha−1 y−1]: Chlorella, ≈ 14.1 ± 0.66; Dunaliella, ≈ 5.48 ± 0.39; Phaeodactylum, ≈ 6.58 ± 0.42 but such calculations do not take weather, such as cloud cover, and temperature, into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

E:

irradiance 400–700 nm photosynthetic photon flux density (PPFD)

E0 :

irradiance at a pond surface

Eopt :

optimum irradiance

Ex :

irradiance at a depth x in a pond

kL :

attenuation constant

PPFD:

photosynthetic photon flux density

P G :

gross photosynthesis expressed on an oxygen basis (P G = rETR/4)

P N :

net photosynthesis (P N = P G + R)

R :

respiration

rETR:

relative electron transport rate

ΦPSII :

effective quantum yield

References

  • Ai, W., Guo, S., Qin, L., Tang, Y.: Development of a groundbased space micro-algae photo-bioreactor. — Adv. Space Res. 41: 742–747, 2008.

    Article  CAS  Google Scholar 

  • Allen, M.M.: Methods for cyanophyceae. — In: Stein, J.R. (ed.) Handbook of Phycological Methods: Culture Methods and Growth Measurements. Pp. 127–138. Cambridge Univ. Press, Cambridge 1973.

    Google Scholar 

  • Antoni, D., Zverlov, V.V., Scharz, W.H.: Biofuels from microbes. — Appl. Microbiol. Biotechnol. 77: 23–35, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Belasco, W.: Algae Burgers for a Hungry World? The Rise and Fall of Chlorella Cuisine. — Technol. Cult. 38: 608–634, 1997.

    Article  Google Scholar 

  • Behrenfeld, M.J., Falkowski, P.G.: Photosynthetic rates derived from satellite-based chlorophyll concentration. — Limnol. Oceanogr. 42: 1–20, 1997.

    Article  CAS  Google Scholar 

  • Bidigare, R.R., Prezelin, B.B., Smith, R.C.: Bio-optical models and the problems of scaling. — In: Falkowski, P.G. (ed.): Primary Productivity and Biogeochemical Cycles in the Sea. Pp. 175–212. Plenum Press, New York 1992.

    Google Scholar 

  • Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.

    Article  Google Scholar 

  • Borowitzka, L.J.: Commercial production of microalgae: ponds, tanks, tubes and fermenters. — J. Biotechnol. 70: 313–321, 1999.

    Article  CAS  Google Scholar 

  • Borowitzka, M.A.: Algal biotechnology products and processes — matching science and economics. — J. Appl. Phycol. 4: 267–279, 1992.

    Article  Google Scholar 

  • Borowitzka, M.A., Borowitzka, L.J.: Micro-algal Biotechnology. — Cambridge Univ. Press Publ., Cambridge 1988.

    Google Scholar 

  • Chisti, Y.: Biodiesel from microalgae. — Biotechnol. Adv. 25: 294–306, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Chisti, Y.: Biodiesel from microalgae beats bioethanol. — Trends Biotechnol. 26: 126–131, 2008a.

    Article  PubMed  CAS  Google Scholar 

  • Chisti, Y.: Response to Reijnders: Do biofuels from microalgae beat biofuels from terrestrial plants? — Trends Biotechnol. 26: 351–352, 2008b.

    Article  CAS  Google Scholar 

  • Colinvaux, P.A.: Why Big Fierce Animals are Rare: an Ecologist’s Perspective. — Princeton Univ. Press, Princeton 1978.

    Google Scholar 

  • Cullen J.J., Geider, R.J., Ishizaka, J. et al.: Towards a general description of phytoplankton growth for biogeochemical models. — In: Evans, G.T., Fasham, M.J.R. (ed.): Towards a General Description of Phytoplankton Growth for Biogeochemical Models. Pp. 153–176. NATO ASl Series 1, Vol. 10. Springer, Berlin 1993.

    Google Scholar 

  • Dauta, A., Devaux, J., Piquemal, F., Boumnich, L.: Growth rate of four freshwater algae in relation to light and temperature. — Hydrobiologia 207: 221–226, 1990.

    Article  Google Scholar 

  • Davidson, A.T.: Effects of Ultraviolet Radiation on Microalgal Growth, Survival and Production. — In: Rao, D.V.S. (ed.): Algal Cultures Analogues of Blooms and Applications Vol. II. Pp. 715–767. Science Publishers, Enfield 2006.

    Google Scholar 

  • Duarte, P.: Photosynthesis-Irradiance Relationships in Marine Algae. — In: Rao, D.V.S. (ed.): Algal Cultures Analogues of Blooms and Applications. Vol. II. Pp. 639–670. Science Publishers, Enfield 2006.

    Google Scholar 

  • Eilers, P.H.C., Peeters, J.C.H.: A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. — Ecol. Model. 42: 199–215, 1988.

    Article  Google Scholar 

  • Engqvist, A., Sjöberg, S.: An analytical integration method of computing diurnal primary production from Steele’s light response curve. — Ecol. Model. 8: 219–232, 1980.

    Article  CAS  Google Scholar 

  • Falkowski, P.G.: Light-shade adaptation and assimilation numbers. — Plankton Res. 3: 203–216, 1981.

    Article  CAS  Google Scholar 

  • Falkowski, P.G., Greene, R., Kolber, Z.: Light utilization and photoinhibition of photosynthesis in marine phytoplankton. — In: Baker, N.R., Bowyer, J.R. (ed.): Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Pp. 407–432. BIOS Scietific Publ., Oxford 1994.

    Google Scholar 

  • Falkowski, P.G., Raven, J.A.: Aquatic photosynthesis. 2nd E.n. Princeton Univ. Press, Princeton 2007.

    Google Scholar 

  • Fawley, M.W.: Effects of light intensity and temperature interactions on growth characteristics of Phaeodactylum tricornutum (Bacillariophyceae). — J. Phycol. 20: 67–72, 1984.

    Article  Google Scholar 

  • Garcia, H.E., Gordon, L.: Oxygen Solubility in Seawater: Better Fitting Equations. — Limnol. Oceanogr. 37: 1307–1312, 1992.

    Article  CAS  Google Scholar 

  • Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Giordano, M., Beardall, J.: Impact of environmental conditions on photosynthesis, growth and carbon allocation strategies of hypersaline species of Dunaliella. — Global Nest J. 11: 79–85, 2009.

    Google Scholar 

  • Gloag, R.S., Ritchie, R.J., Chen, M., Larkum, A.W.D., Quinnell, R.G.: Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the Chlorophyll dcontaining oxyphotobacterium Acaryochloris marina Miyashita. — Biochim. Biophys. Acta-Bioenergetics 1767: 127–135, 2007.

    Article  CAS  Google Scholar 

  • Grobbelaar, J.U.: Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? — J. Appl. Phycol. 19: 591–598, 2007.

    Article  CAS  Google Scholar 

  • Grobbelaar, J.U., Soeder, C.J., Stengel, E.: Modelling Algal Productivity in Large Outdoor Cultures and Waste Treatment Systems. — Biomass 21: 297–314, 1990.

    Article  Google Scholar 

  • Huntley, M.E., Redalje, D.G.: CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. — Mitig. Adapt. Strat. GL 12: 573–608, 2007.

    Article  Google Scholar 

  • Jassby, A.D., Platt T.: Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. — Limnol. Oceanogr. 21: 540–547, 1976.

    Article  CAS  Google Scholar 

  • Johnson, M.L., Faunt, L.M.: Parameter estimation by least squares methods. — Methods Enzymol. 210: 1–37, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Kroon, B.M.A., Ketelaars, H.A.M., Fallowfield, H.J., Mur, L.R.: Modelling microalgal productivity in a High Rate Algal Pond based on wavelength dependent optical properties. — J. Appl. Phycol. 1: 247–256, 1989.

    Article  Google Scholar 

  • Larkum, A.W.D.: Limitations and prospects of natural photosynthesis for bioenergy production. — Curr. Opin. Biotechnol. 21: 271–276, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Larkum, A.W.D., Douglas, S.E., Raven, J.A. (ed.): Photosynthesis in Algae. — Kluwer Academic, Dordrecht 2003.

    Book  Google Scholar 

  • Larkum, T., Howe, C.J.: Molecular Aspects of Light-harvesting Processes in Algae. — Adv. Bot. Res. 27: 257–330, 1997.

    Article  CAS  Google Scholar 

  • Lorentzen, C.J.: The Penetration of light in the sea. — In: Cushing, D.H., Walsh, J.J. (ed.): The Ecology of the Seas. Pp. 173–185. Blackwell Scientific, Oxford 1976.

    Google Scholar 

  • Lorrain, P., Corson, D.R., Lorrain, F.: Plane electromagnetic waves III.- In: Lorrain, P., Corson, D.R., Lorrain, F.: Electromagnetic Fields and Waves. Pp. 557–561. Freeman, New York 1988.

    Google Scholar 

  • MacIntyre, H.L., Kana, T.M., Anning, T., Geider, R.J.: Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. — J. Phycol. 38: 17–38, 2002.

    Article  Google Scholar 

  • McBride, G.B.: Calculation of Daily Photosynthesis by Means of Five Photosynthesis-Light Equations. — Limnol. Oceanogr. 37: 1796–1808, 1992.

    Article  Google Scholar 

  • Melis, A.: Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. — Philos. Trans. Roy. Soc. London Ser. B 323: 397–409, 1989.

    Article  CAS  Google Scholar 

  • Miller, C.B.: Biological Oceanography. — Blackwell Publ., Malden 2006.

    Google Scholar 

  • Moheimani, N.R., Borowitzka, M.A.: The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. — J. Appl. Phycol. 18: 703–712, 2006a.

    Article  Google Scholar 

  • Moheimani, N.R., Borowitzka, M.A.: Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. — Biotechnol. Bioeng. 1: 27–36, 2006b.

    Google Scholar 

  • Morel, A.: Light and marine photosynthesis: a spectral model with geochemical and climatological implications. — Prog. Oceanogr. 26: 263–306, 1991.

    Article  Google Scholar 

  • Nishri, A., Ben Yarkov, S.: Solubility of oxygen in the Dead Sea. — Hydrobiologia 197: 99–104, 1990.

    Article  CAS  Google Scholar 

  • Oswald, W.J.: Productivity of algae in sewage disposal. — Sol. Energy 15: 107–117, 1973.

    Article  CAS  Google Scholar 

  • Platt T., Sathyendranath S.: Oceanic primary production: estimation by remote sensing at local and regional scales. — Science 241: 1613–1620, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Ralph, P.J., Gademann, R.: Rapid light curves: A powerful tool to assess photosynthetic activity. — Aquat. Bot. 82: 222–237, 2005.

    Article  CAS  Google Scholar 

  • Richmond, A., Zou, N.: Efficient utilisation of high photon irradiance for mass production of photoautotrophic microorganisms. — J. Appl. Phycol. 11: 123–127, 1999.

    Article  Google Scholar 

  • Ritchie, R.J.: Consistent sets of spectrophotometric equations for acetone, methanol and ethanol solvents. — Photosynth. Res. 89: 27–41, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, R.J.: Universal chlorophyll equations for estimating chlorophylls a, b, c and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol or ethanol solvents. — Photosynthetica 46: 115–126, 2008a.

    Article  CAS  Google Scholar 

  • Ritchie, R.J.: Fitting light saturation curves measured using PAM fluorometry. — Photosynth. Res. 96: 201–215, 2008b.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, R.J.: Modelling Photosynthetically Active Radiation and Maximum Potential Gross Photosynthesis. — Photosynthetica 48: 596–609, 2010.

    Article  CAS  Google Scholar 

  • Ritchie, R.J.: Photosynthesis in the Blue Water Lily (Nymphaea caerulea Saligny) using PAM Fluorometry. — Int. J. Plant Sci. 173: 124–136, 2012.

    Article  CAS  Google Scholar 

  • Ritchie, R.J., Bunthawin, S.: The use of PAM (Pulse Amplitude Modulation) fluorometry to measure photosynthesis in a CAM orchid, Dendrobium spp. (D. ‘Viravuth’ Pink). — Int. J. Plant Sci. 171: 575–585, 2010a.

    Article  Google Scholar 

  • Ritchie, R.J., Bunthawin, S.: The Use of PAM (Pulse Amplitude Modulation) Fluorometry to Measure Photosynthesis in Pineapple (Ananas comosus [L.] Merr). — Trop. Plant Biol. 3: 193–203, 2010b.

    Article  CAS  Google Scholar 

  • Robertson, M.J., Wood, A.W., Muchow, R.C.: Growth of sugarcane under high input conditions in tropical Australia. I. Radiation use, biomass accumulation and partitioning. — Field Crops Res. 48: 11–25, 1996.

    Article  Google Scholar 

  • Sheehan, J., Dunahay, T., Benemann, J., Roessler, P.: A look back at the US Department of Energy’s Aquatic Species Program: Biodiesel from Algae. NREL/TP-580-24190. NREL, Golden, Colorado, 1998. (Available at http://www1.eere.energy.gov/biomass/pdfs/biodiesel_from_algae.pdf. [Accessed 03 January 2009].)

    Book  Google Scholar 

  • Sherwood, J.E., Stagnitti, F., Kokkinn, M.J., Williams, W.D.: Dissolved oxygen concentrations in hypersaline waters. — Limnol. Oceanogr. 36: 235–250, 1991.

    Article  CAS  Google Scholar 

  • Shimamatsu, H.: A pond for edible Spirulina production and its hydraulic studies. — Hydrobiologia 151/152: 83–89, 1987.

    Article  Google Scholar 

  • Shimamatsu, H.: Mass production of Spirulina, an edible microalga. — Hydrobiologia 512: 39–44, 2004.

    Article  Google Scholar 

  • SMARTS: Simple Model of Atmospheric Radiative Transfer of Sunshine (SMARTS): http://www.nrel.gov/rredc/smarts/ [Accessed 23/11/2009].

  • Smayda, T.J.: Autecology of bloom-forming microalgae: extrapolation to field populations and the refield-braarud debate revisited. — In: Rao, D.V.S. (ed.): Algal Cultures Analogues of Blooms and Applications. Vol. I, Pp. 215–270. Science Publishers, Enfield 2006.

    Google Scholar 

  • Sosik, H.M., Mitchell, B.G.: Effects of temperature on growth, light absorption, and quantum yield in Dunaliella tertiolecta (Chlorophyceae). — J. Phycol. 30: 833–840, 1994.

    Article  Google Scholar 

  • Steele, J.H.: Environmental control of photosynthesis in the sea. — Limnol. Oceanogr. 7: 137–150, 1962.

    Article  Google Scholar 

  • Stemke, J.A., Santiago, L.S.: Consequences of light absorptance in calculating electron transport rate of desert and succulent plants. — Photosynthetica 49: 195–200, 2011.

    Article  Google Scholar 

  • Sukenik, A., Levy, R.S., Levy, Y., Falkowski, P.G., Dubinsky, Z.: Optimizing algal biomass production in an outdoor pond: a simulation model. — J. Appl. Phycol. 3: 191–201, 1991.

    Article  Google Scholar 

  • Talling, J.F, Wood, R.B, Prosser, M.V., Baxter, R.M.: The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. — Freshwater Biol. 3: 53–76, 1973.

    Article  Google Scholar 

  • Walker, D.A.: The Use of the Oxygen Electrode and Fluorescence Probes in Simple Measurements of Photosynthesis. — Oxygraphics Publ., Sheffield 1990.

    Google Scholar 

  • Walker, D.A.: Biofuels, facts, fantasy, and feasibility. — J. Appl. Phycol. 21: 509–517, 2009.

    Article  Google Scholar 

  • Walker, D.A.: Biofuels — for better or worse? — Ann. Appl. Biol. 156: 319–327, 2010.

    Article  Google Scholar 

  • Waltz, E.: Biotechs green gold? — Nat. Biotechnol. 27: 15–18, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Warburg, O.: [On the rate of photochemical carbonic acid decomposition in living cells.] — Biochem. Z. 100: 232–262, 1919. [In German.]

    Google Scholar 

  • Weissman, J.C., Goebel, R.P., Benemann, J.R.: Photobioreactor design: mixing, carbon utilization, and Oxygen Accumulation. — Biotechnol. Bioeng. 31: 336–344, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Westlake, D.F.: Comparisons of plant productvity. — Biol. Rev. 38: 385–425, 1963.

    Article  Google Scholar 

  • Weyer, K.M., Bush, D.R., Darzins, A., Willson, B.D.: Theoretical maximum algal oil production. — Bioenerg. Res. 3: 204–213, 2010.

    Article  Google Scholar 

  • White, A.J., Critchley, C.: Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. — Photosynth. Res. 59: 63–72, 1999.

    Article  CAS  Google Scholar 

  • Zmora, O., Richmond, A.: Microalgae for aquaculture, microalgae production for aquaculture. — In: Richmond, A. (ed.): Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Pp. 365–79. Blackwell Scientific, Oxford 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Ritchie.

Additional information

Acknowledgements: The authors wish to thank Dr. John W. Runcie (University of Sydney), Prof. Michael Borowitzka (Murdoch University) and Mr. Mark Curran (University of Sydney, retired) for their interest in this study and helpful comments on the paper. One of our referees correctly pointed out to us the significance of dissolved organic carbon (DOC) as a significant loss of fixed carbon in ponds and raceways. Dr. Min Chen (University of Sydney) provided laboratory space for RJR at The University of Sydney. Dr. Tania Prvan (Macquarie University) used Maple® software (Maple 10.04, Maplesoft, a division of Waterloo Maple Inc. 1981–2006) for the solving integral calculus problems necessary in the study. The EXCEL© files for light curve fitting, chlorophyll measurements, calculation of reflection and refraction and solar irradiance and solar angle data (for selected latitudes) are available upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, R.J., Larkum, A.W.D. Modelling photosynthesis in shallow algal production ponds. Photosynthetica 50, 481–500 (2012). https://doi.org/10.1007/s11099-012-0076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-012-0076-9

Additional key words

Navigation