Skip to main content
Log in

Growth rate of four freshwater algae in relation to light and temperature

  • Part Three: Role of Organism
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Four algae of freshwater phytoplankton were studied in monospecific culture: Chlorella vulgaris, Fragilaria crotonensis, Staurastrum pingue and Synechocystis minima. Experiments were performed to determine the growth rate over a wide range of light intensities (5–800 µE m−2 s−1, 15/9 light/dark photoperiod) and temperatures (10–35 °C). The results provide a set of parameters (particularly the maximal growth rate associated to optimal conditions of light and temperature) for a three-equation model used to described the growth rate response of a non-nutrient-limited culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren G., 1978. Growth of Oscillatoria agardhii in chemostat culture. 2. Dependance of growth constants on temperature. Mitt. Int. Ver. Limnol. 21: 88–102.

    Google Scholar 

  • Ahlgren G., 1987. Temperature functions in biology and their application to algal growth constants. Oikos 49: 177–190.

    Google Scholar 

  • Chen C. W. & G. T. Orlob, 1975. Ecological simulation for aquatic environments. In B. C. Patten (ed.), Systems analysis and simulations in ecology. 3, Acad. Press, N.Y.: 475–528.

    Google Scholar 

  • Cloern J. E., 1976. Population dynamics of Cryptomonas ovata: a laboratory, field and computer simulation study. Ph. D., Washington State University, 102 p.

  • Dauta A., 1982a. Conditions de développement du phytoplancton. Etude comparative de huit espèces en culture. I. Détermination des paramètres de croissance en fonction de la lumière et de la température, Annls Limnol. 18: 217–262.

    Google Scholar 

  • Dauta A., 1982b. Conditions de développement du phytoplancton. Etude comparative de huit espèces en culture. II. Rôle des nutriments: assimilation et stockage. Annls Limnol. 18: 263–292.

    Google Scholar 

  • Dauta A., 1986. Modélisation du développement du phytoplancton dans une rivière canalisée eutrophe: le Lot (France). Annls Limnol. 21: 199–132.

    Google Scholar 

  • Di Toro D. M., D. J. O'Connor & R. V. Thomann, 1971. A dynamic model of phytoplankton populations in the Sacramento-San Joaquim delta. In R. F. Gould (ed.), Non equilibrium systems in natural water chemistry, Advances in Chemistry, Ser. 106, Am. Chem. Soc., Washington: 131–180.

    Google Scholar 

  • Feuillade J. B. & M. Feuillade, 1987. Modelling steady-state growth and photosynthesis rates of Oscillatoria rubescens continuous cultures in relation to temperature and irradiance. J. Plankton Res. 9: 445–457.

    Google Scholar 

  • Foy R. H., C. E. Gibson & R. V. Smith, 1976. The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae. Br. Phycol. J. 11: 151–163.

    Google Scholar 

  • Goldman J. C., 1979. Physiological processes, nutrient availability, and the concept of relative growth rate in marine phytoplankton ecology. In P. G. Falkowski (ed.), Primary productivity in the sea, New-York, Plenum: 179–194.

    Google Scholar 

  • Guerri M. M., Dauta A. & Brunel L., 1981. Interaction de la lumière et de la température sur le taux de croissance de Scenedesmus crassus. Annls Limnol. 17: 97–104.

    Google Scholar 

  • Harris G. P., 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Ergebn. Limnol. 10: 1–163.

    Google Scholar 

  • Hartig J. H. & D. G. Wallen, 1986. The influence of light and temperature on growth and photosynthesis of Fragilaria crotonensis Kitton. J. Freshwat. Ecol. 3: 371–382.

    Google Scholar 

  • Jones L. W. & B. Kok, 1966. Photoinhibition of chloroplasts reactions. I. Kinetics and action spectra. Plant Physiol. 41: 1037–1043.

    Google Scholar 

  • Konopka A. E. & T. D. Brock., 1978. Effect of temperature on blue-green algae (Cyanobacteria) in lake Mendota. Appl. Envir. Microbiol. 36: 572–576.

    Google Scholar 

  • Lehman J. T., D. B. Botkin & G. E. Likens, 1975. The assumptions and rationales of a computer model of phytoplankton population dynamics. Limnol. Oceanogr. 20: 343–364.

    Google Scholar 

  • Morgan K. C. & J. Kalff., 1979. Effect of light and temperature interactions on growth of Cryptomonas erosa (Cryptophyceae). J. Phycol. 15: 127–134.

    Google Scholar 

  • Peeters J. C. & P. Eilers, 1978. The relationship between light intensity and photosynthesis: a simple mathematical model. Hydrobiol. Bull. 12: 134–136.

    Google Scholar 

  • Post A. F., R. de Witt & L. R. Mur, 1985. Interactions between temperature and light intensity on growth and photosynthesis of the cyanobacterium Oscillatoria agardhii. J. Plankton Res. 7: 487–495.

    Google Scholar 

  • Reynolds C. S., 1984. The ecology of freshwater phytoplankton, Cambridge University Press, London, 384 p.

    Google Scholar 

  • Reynolds C. S., 1988. The concept of biological succession applied to seasonal periodicity of freshwater phytoplankton. Verh. Int. Ver. Limnol. 23: 683–691.

    Google Scholar 

  • Reynolds C. S., 1989. Physical determinants of phytoplankton succession. In U. Sommer (ed.), Plankton Ecology. Springer Verlag. Berlin: 9–56.

    Google Scholar 

  • Satoh K., 1970. Mechanism of photoinactivation in photosynthetic systems. I. The dark reaction in photoinactivation. PI. Cell Physiol., Tokyo 11: 15–27.

    Google Scholar 

  • Sommers U., 1989. The role of competition for resources in phytoplankton succession. In U. Sommer (ed.), Plankton Ecology. Springer Verlag, Berlin: 57–106.

    Google Scholar 

  • Steele J. H., 1962. Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7: 137–150.

    Google Scholar 

  • Straskraba M. & M. Dvorakova, 1980. Application to the continuous culture concepts to mathematical modeling of natural phytoplankton populations. Continuous Cultivation of Microorganisms, Proc. 7th Symp. Prague, 1978: 409–416.

  • Tamya H., T. Iwamura, K. Shibata, E. Hase & T. Nihei, 1953. Correlation between photosynthesis and light independant metabolism in the growth of Chlorella. Biochim. Biophys. Acta 12: 24–40.

    Google Scholar 

  • Thomann R. V., D. M. Di Toro, D. R. P. Winfield & D. J. O'Connor, 1975. Mathematical modelling of phytoplankton in lake Ontario. I-Model development and verification. U.S. Envir. Prot. Agency, Corvallis, Oregon, 176 p.

    Google Scholar 

  • Zevenboom W., 1980. Growth and nutrient uptake kinetics of Oscillatoria agardhii. A comparative investigation of continuous cultures and natural populations of a cyanobacterium. Ph. D., Univ. Amsterdam, 178 p.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dauta, A., Devaux, J., Piquemal, F. et al. Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 207, 221–226 (1990). https://doi.org/10.1007/BF00041459

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041459

Key words

Navigation