Skip to main content
Log in

Modelling photosynthetic photon flux density and maximum potential gross photosynthesis

  • Original Papers
  • Published:
Photosynthetica

Abstract

Irradiance data software developed by the NREL Solar Radiation Laboratory (Simple Model of Atmospheric Radiative Transfer of Sunshine, SMARTS) has been used for modelling photosynthesis. Spectra and total irradiance were expressed in terms of quanta [mol m−2 s−1, photosynthetic photon flux density, PPFD (400–700 nm)]. Using the SMARTS software it is possible to (1) calculate the solar spectrum for a planar surface for any given solar elevation angle, allowing for the attenuating effects of the atmosphere on extraterrestrial irradiance at each wavelength in the 400–700 nm range and for the thickness of atmosphere the light must pass through during the course of a day, (2) calculate PPFD vs. solar time for any latitude and date and (3) estimate total daily irradiance for any latitude and date and hence calculate the total photon irradiance for a whole year or for a growing season. Models of photosynthetic activity vs. PPFD are discussed. Gross photosynthesis (P g) vs. photosynthetic photon flux density (PPFD) (P g vs. I) characteristics of single leaves compared to that of a canopy of leaves are different. It is shown that that the optimum irradiance for a leaf (Iopt) is the half-saturation irradiance for a battery of leaves in series. A C3 plant, with leaves having an optimum photosynthetic rate at 700 μmol m−2 s−1 PPFD, was used as a realistic worked example. The model gives good estimates of gross photosynthesis (P g) for a given date and latitude. Seasonal and annual estimates of P g can be made. Taking cloudiness into account, the model predicts maximum P g rates of about 10 g(C) m−2 d−1, which is close to the maximum reported P g experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

ETI:

extraterrestrial irradiance

ETR:

electron transport rate

I:

irradiance PPFD

Id :

daily irradiance PPFD

P g :

gross photosynthesis

PAR:

photosynthetically active radiation

PPFD:

photosynthetic photon flux density

PS:

photosystem

SMARTS :

Simple Model of Atmospheric Radiative Transfer of Sunshine

αp :

photosynthetic efficiency

References

  • Antoni, D., Zverlov, V.V., Schwarz, W.H.: Biofuels from microbes. — Appl. Microbiol. Biotechnol. 77: 23–35, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.

    Article  Google Scholar 

  • Chen, M., Schliep, M., Willows, R.D., Cai, Z.-L., Neilan, B.A., Scheer, H.: A red-shifted chlorophyll. — Science 329: 1318–1319, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Falkowski, P.G., Raven, J.A.: Aquatic photosynthesis, 2nd Ed., Princeton Univ. Press, Princeton 2007.

    Google Scholar 

  • Finazzi, G., Rappaport, F., Furia, A., Fleischmann, M., Rochaix, J-D., Zito, F., Forti, G.: Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. — EMBO Rep. 31: 280–285, 2002.

    Article  Google Scholar 

  • Friend, A.D.: Modelling canopy CO2 fluxes: are “big leaf” simplifications justified? — Global Ecol. Biogeogr. 10: 603–619, 2001.

    Article  Google Scholar 

  • Gensler, W.G. (ed.): Advanced agricultural instrumentation. - In: Proc. NATO advanced Study Inst: Advanced Agricultural Instrumentation. Martinus Nijhoff Publ., Dordrecht 1984.

  • Gloag, R.S., Ritchie, R.J., Chen, M., Larkum, A.W.D., Quinnell, R.G.: Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the Chlorophyll d-containing oxyphotobacterium Acaryochloris marina Miyashita. — BBA — Bioenergetics 1767: 127–135, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Grobbelaar, J.U.: Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? — J. Appl. Phycol. 19: 591–598, 2007.

    Article  CAS  Google Scholar 

  • Gueymard, C.: SMARTS, A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment, Professional Paper FSEC-PF-270-95. — Florida Solar Energy Center, Cocoa 1995.

    Google Scholar 

  • Gueymard, C.: Parameterized Transmittance Model for Direct Beam and Circumsolar Spectral Irradiance. — Sol. Energy 71: 325–346, 2001.

    Article  CAS  Google Scholar 

  • Gueymard, C.A., Myers, D., Emery, K.: Proposed reference irradiance spectra for solar energy systems testing. — Sol. Energy 73: 443–467, 2002.

    Article  Google Scholar 

  • Hodges, M., Barber J.: Photosynthetic adaptation of pea plants grown at different light intensities: State 1 — State 2 transitions and associated chlorophyll fluorescence changes. — Planta 157: 166–173, 1983.

    Article  CAS  Google Scholar 

  • Huntley, M.E., Redalje, D.G.: CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. — Mitig. Adapt. Strategies Global Change 12: 573–608, 2007.

    Article  Google Scholar 

  • Iwai, M., Takizawa, K., Tokutsu, R., Okamuro, A., Takahashi, Y., Minagawa, J.: Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. — Nature 464: 1210–1214, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Jones, H.G.: Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. 2nd Ed. — Cambridge Univ. Press, Cambridge 1992.

    Google Scholar 

  • Kyewalyanga, M.N, Platt T., Sathyendranath S.: Estimation of the photosynthetic action spectrum: Implication for primary production models. — Mar. Ecol. Prog. Ser. 146: 207–223, 1997.

    Article  Google Scholar 

  • Kühl, M., Cohen, Y., Dalsgaard, T., Jørgensen, B.B., Revsbech, N.P.: Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for 02, pH and light. — Mar. Ecol. Prog. Ser 117:159–172, 1995.

    Article  Google Scholar 

  • Larkum, A.W.D.: Limitations and prospects of natural photosynthesis for bioenergy production. — Curr. Opin. Biotech. 21: 271–276, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Larkum, A.W.D., Douglas, S.E., Raven, J.A. (ed.): Photosynthesis in Algae. — Kluwer Academic Publish., Dordrecht — Boston — London 2003.

    Google Scholar 

  • Lee, D.W., Bone, R.A., Tarsis, S.L., Storch, D.: Correlates of leaf optical properties in tropical forest sun and extreme shade plants. — Amer. J. Bot. 77: 370–380, 1990.

    Article  Google Scholar 

  • McCree, K.J.: The action spectrum, absorbance and quantum yield of photosynthesis in crop plants. — Agr. Meteorol. 9: 191–216, 1972.

    Article  Google Scholar 

  • McCree, K.J.: The measurement of photosynthetically active radiation. — Sol. Energy 15: 83–87, 1973.

    Article  CAS  Google Scholar 

  • Miller, C.B.: Biological Oceanography, — Blackwell Publ., Malden 2006.

    Google Scholar 

  • Myeni, R.B., Yang W., Nemani, R.R. et al: Large seasonal swings in leaf area of Amazon rainforests. — Proc. Natl. Acad. Sci. USA 104: 4820-4823, 2007.

    Article  Google Scholar 

  • Neori, A., Vernet, M., Holm-Hansen, O. and Haxo, F.T.: Comparison of chlorophyll far-red and red fluorescence excitation spectra with photosynthetic oxygen action spectra for photosystem II in algae. — Mar. Biol. Progr. Ser. 44: 297–302, 1988.

    Article  CAS  Google Scholar 

  • NOAA Earth System Research Laboratory: Mauna Loa annual mean data. — http://www.esrl.noaa.gov/gmd/ccgg/trends [Accessed 15 November 2009].

  • NREL Solar Radiation Laboratory (2008): Solar position calculators (SOLPOS). — http://www.nrel.gov/midc/srrl_bms/ [Accessed 01 October 2009].

  • Olofsson, P., Van Laake, P.E., Eklundh, L.: Estimation of absorbed PAR across Scandinavia from satellite measurements. Part I: Incident PAR. — Remote Sens. Environ. 110: 252–261, 2007.

    Article  Google Scholar 

  • Ploug, H., Lassen, C., Jørgensen, B.B.: Action spectra of microalgal photosynthesis and depth distribution of spectral scalar irradiance in a coastal marine sediment of Limfjorden, Denmark. — FEMS Microbiol. Ecol. 12: 69–78, 1993.

    Article  CAS  Google Scholar 

  • Posada, J.M., Lechowicz, M.J., Kitajima, K.: Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. — Ann. Bot. 103: 795–805, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Raven, J.A., Kübler, J.E., Beardall J.: Put out the light, and then put out the light. — J. Mar. Bio Ass. U.K. 80:1–25, 2000.

    Article  CAS  Google Scholar 

  • Reference Solar Spectral Irradiance: Air Mass 1.5 (2003) ASTM G173-03. — http://rredc.nrel.gov/solar/spectra/am1.5/ [Accessed 02 November 2008].

  • Richmond, A., Zou, N.: Efficient utilisation of high photon irradiance for mass production of photoautotrophic microorganisms. — J. Appl. Phycol. 11: 123–127, 1999.

    Article  Google Scholar 

  • Reikard, G.: Predicting solar radiation at high resolutions: A comparison of time series forecasts. — Sol. Energy 83: 342–349, 2009.

    Article  CAS  Google Scholar 

  • Ritchie, R.J.: Fitting light saturation curves measured using PAM fluorometry. — Photosynth. Res. 96: 201–215, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Ritchie R.J., Bunthawin S.: The use of Pulse Amplitude Modulation (PAM) fluorometry to measure photosynthesis in a CAM orchid, Dendrobium ssp. (D. ‘Viravuth’ Pink). — Int. J. Plant Sci. 171: 575–585, 2010.

    Article  Google Scholar 

  • Rubio, M.A., López, G., Tovar, J., Pozo, D., Batlles, F.J.: The use of satellite measurements to estimate photosynthetically active radiation. — Phys. Chem. Earth 30: 159–164, 2005.

    Google Scholar 

  • Rossow, W.B., Duenas, E.N.: The International Satellite Cloud Climatology Project (ISCCP) Web site. — Bull. Amer. Meteor. Soc. 85: 167–172, 2004.

    Article  Google Scholar 

  • Sheehan, J., Dunahay, T., Benemann, J., Roessler, P.: A look back at the US Department of Energy’s Aquatic Species Program: Biodiesel from Algae, NREL/TP-580-24190. NREL, Golden, Colorado, USA 1998. http://www1.eere.energy.gov/biomass/pdfs/biodiesel_from_algae.pdf. [Accessed 03 January 2009].

    Book  Google Scholar 

  • Simple Model of Atmospheric Radiative Transfer of Sunshine (SMARTS) http://www.nrel.gov/rredc/smarts/ [Accessed 23/11/2009].

  • Subramaniam, A., Carpenter, E.J., Karentz, D., Falkowski, P.G.: Bio-optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and photosynthetic action spectra. — Limnol. Oceanogr. 44: 608–617, 1999.

    Article  CAS  Google Scholar 

  • Sušila, P., Lazár, D., Ilík, P., Tomek, P., Nauš, J.: The gradient of exciting radiation within a sample affects the relative height of steps in the fast chlorophyll a fluorescence rise. — Photosynthetica 42: 161–172, 2004.

    Article  Google Scholar 

  • Taize, L., Zeiger, E.: Plant Physiology. 3rd Ed. Sinauer Associates, Sunderland 2002.

    Google Scholar 

  • Thornley, J.H.M.: Dynamic model of leaf photosynthesis with acclimation to light and nitrogen. — Ann. Bot. 81: 421–430, 1998.

    Article  Google Scholar 

  • Walker, D.A.: Biofuels, facts, fantasy and feasibility. — J. Appl. Phycol. 21: 509–517, 2009.

    Article  Google Scholar 

  • Walsby, A.E.: Numerical integration of phytoplankton photosynthesis through time and depth in a water column. — New Phytol. 136: 189–209, 1997.

    Article  CAS  Google Scholar 

  • Waltz, E.: Biotech’s green gold? — Nature Biotechnol. 27: 15–18, 2009.

    Article  CAS  Google Scholar 

  • White, A.J., Critchley, C.: Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. — Photosynth. Res. 59: 63–72, 1999.

    Article  CAS  Google Scholar 

  • Zhu, X.-G., Long, S.P., Ort, D.R.: What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? — Curr. Opin. Biotech. 19: 153–159, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Dr John W. Runcie (University of Sydney), Emeritus Prof Tony Larkum and Mr Mark Curran (ret.) (University of Sydney) for their interest in this study and helpful comments on the paper. I especially wish to thank Dr Christian Gueymard for help in using the SMARTS software (NREL and Solar Consulting Services http://www.SolarConsultingServices.com

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Ritchie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, R.J. Modelling photosynthetic photon flux density and maximum potential gross photosynthesis. Photosynthetica 48, 596–609 (2010). https://doi.org/10.1007/s11099-010-0077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-010-0077-5

Additional keywords

Navigation