Skip to main content
Log in

In Vitro Cell Integrated Impactor Deposition Methodology for the Study of Aerodynamically Relevant Size Fractions from Commercial Pressurised Metered Dose Inhalers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to present a modified Andersen cascade impactor (ACI) as a platform to evaluate the deposition and subsequent transport of aerosol micropaticles across airway epithelial cells.

Methods

The impaction plate of an ACI was modified to accommodate up to eight Snapwells. Aerodynamic particle size distribution of the modified ACI was investigated with two commercially available formulations of Ventolin® (salbutamol sulphate) and QVAR® (beclomethasone dipropionate). Deposition and transport of these drug microparticles across sub-bronchial epithelial Calu-3 cells were also studied.

Results

The modified ACI demonstrated reproducible deposition patterns of the commercially available pressurised metered dose inhalers compared to the standard ACI. Furthermore, the Calu-3 cells could be placed in different stages of the modified ACI. No significant effect was observed among the transport rate of different particle sizes deposited on Calu-3 cells within the range of 3.3 to 0.4 μm.

Conclusions

The use of the cell compatible ACI to assess the fate of microparticles after deposition on the respiratory epithelia may allow for better understanding of deposited microparticles in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276(5320):1868–72.

    Article  CAS  PubMed  Google Scholar 

  2. Haghi M, Bebawy M, Colombo P, Forbes B, Lewis DA, Salama R, et al. Towards the bioequivalence of pressurised metered dose inhalers 2. Aerodynamically equivalent particles (with and without glycerol) exhibit different biopharmaceutical profiles in vitro. Eur J Pharm Biopharm. 2013. doi:10.1016/j.ejpb.2013.02.020.

    Google Scholar 

  3. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  4. Bur M, Lehr C-M. Pulmonary cell culture models to study the safety and efficacy of innovative aerosol medicines. Expert Opin Drug Deliv. 2008;5(6):641–52.

    Article  CAS  PubMed  Google Scholar 

  5. Online databese Stationery Office. British Pharmacopoeia, Appendix XII C London. 2012. Accessed 01 June 2013. Available from: http://www.pharmacopoeia.co.uk.

  6. Swift DL. Use of mathematical aerosol deposition models in predicting the distribution of inhaled therapeutic aerosols. In: Hickey AJ, editor. Inhalation aerosols. New York: Marcel Dekker; 1996. p. 51–7.

    Google Scholar 

  7. Davies NM, Feddah MR. A novel method for assessing dissolution of aerosol inhaler products. Int J Pharm. 2003;255(1–2):175–87.

    Article  CAS  PubMed  Google Scholar 

  8. Arora D, Shah K, Halquist M, Sakagami M. In Vitro Aqueous Fluid-Capacity-Limited Dissolution Testing of Respirable Aerosol Drug Particles Generated from Inhaler Products. Pharm Res. 2010;27(5):786–95.

    Article  CAS  PubMed  Google Scholar 

  9. Dunbar C, Mitchell J. Analysis of cascade impactor mass distributions. J Aerosol Med. 2005;18(4):439–51.

    Article  CAS  PubMed  Google Scholar 

  10. Agu RU, Ugwoke MI. In vitro and in vivo testing methods for respiratory drug delivery. Expert Opin Drug Deliv. 2011;8(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  11. Forbes B, Ehrhardt C, Forbes B, Ehrhardt C. Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm. 2005;60(2):193–205.

    Article  CAS  PubMed  Google Scholar 

  12. Grainger CI, Greenwell LL, Martin GP, Forbes B. The permeability of large molecular weight solutes following particle delivery to air-interfaced cells that model the respiratory mucosa. Eur J Pharm Biopharm. 2009;71(2):318–24.

    Article  CAS  PubMed  Google Scholar 

  13. Grainger CI, Saunders M, Buttini F, Telford R, Merolla LL, Martin GP, et al. Critical characteristics for corticosteroid solution metered dose inhaler bioequivalence. Mol Pharm. 2012;9(3):563–9.

    Article  CAS  PubMed  Google Scholar 

  14. Haghi M, Traini D, Bebawy M, Young PM. Deposition, Diffusion and transport mechanism of dry powder microparticulate salbutamol, at the respiratory epithelia. Mol Pharm. 2012;9(6):1717–26.

    Article  CAS  PubMed  Google Scholar 

  15. Haghi M, Salama R, Traini D, Bebawy M, Young P. Modification of disodium cromoglycate passage across lung epithelium in vitro via incorporation into polymeric microparticles. AAPSJ. 2012;14(1):79–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Haghi M, Traini D, Postma DS, Bebawy M, Young PM. Mediated fluticasone uptake across Calu-3 cells by salmeterol as combination powder inhaler. Respirology. 2013. doi:10.1111/resp.12146.

    PubMed  Google Scholar 

  17. Fiegel J, Ehrhardt C, Schaefer UF, Lehr CM, Hanes J. Large porous particle impingement on lung epithelial cell monolayers–toward improved particle characterization in the lung. Pharm Res. 2003;20(5):788–96.

    Article  CAS  PubMed  Google Scholar 

  18. Bur M, Rothen-Rutishauser B, Huwer H, Lehr C-M. A novel cell compatible impingement system to study in vitro drug absorption from dry powder aerosol formulations. Eur J Pharm Biopharm. 2009;72(2):350–7.

    Article  CAS  PubMed  Google Scholar 

  19. Hein S, Bur M, Schaefer UF, Lehr C-M. A new pharmaceutical aerosol deposition device on cell cultures (PADDOCC) to evaluate pulmonary drug absorption for metered dose dry powder formulations. Eur J Pharm Biopharm. 2011;77(1):132–8.

    Article  CAS  PubMed  Google Scholar 

  20. McDonnell C, Shur J, Burns J, Hipkiss D, Price R. Investigation deposition and drug absorption of budesonide microparticles using a cell compatible next generation impactor. Respir Drug Deliv Proc. 2012; Vol 3, pp 785-788. Davis Healthcare Int’l Publishing. Illinois, USA.

  21. Cooney D, Kazantseva M, Hickey AJ. Development of size-dependent aerosol deposition model utilizing human airway epithelial cells for evaluating aerosol Drug Delivery. ALTA. 2004;32(6):581–90.

    CAS  Google Scholar 

  22. Exiarch H, Haltner-Ukomadu E, Beisswenger C, Bock U. Drug delivery to the lung: Permeability and physicochemical characteristics of drugs as the basis for a pulmonary biopharmaceutical classification system (pBCS). J Epithelial Biol Pharmacol. 2010;3:1–14.

    Google Scholar 

  23. Haghi M, Young PM, Traini D, Jaiswal R, Gong J, Bebawy M. Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model. Drug Dev Ind Pharm. 2010;36(10):1207–14.

    Article  CAS  PubMed  Google Scholar 

  24. Grainger C, Greenwell L, Lockley D, Martin G, Forbes B. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res. 2006;23(7):1482–90.

    Article  CAS  PubMed  Google Scholar 

  25. Mathias NR, Timoszyk J, Stetsko PI, Megill JR, Smith RL, Wall DA, et al. Permeability characteristics of calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. J Drug Target. 2002;10(1):31–40.

    Article  CAS  Google Scholar 

  26. Mitchell J, Nagel M, Wiersema K, Doyle C. Aerodynamic particle size analysis of aerosols from pressurized metered-dose inhalers: Comparison of andersen 8-stage cascade impactor, next generation pharmaceutical impactor, and model 3321 aerodynamic particle sizer aerosol spectrometer. AAPS PharmSciTech. 2003;4(4):425–33.

    Article  PubMed Central  Google Scholar 

  27. Nagel MW, Wiersema KJ, Bates SL, Mitchell JP. Size analysis of a pressurized metered dose inhaler-delivered solution formulation by an Aerosizer-LD time-of-flight aerosol particle size spectrometer. J Aerosol Med Pulm Drug Deliv. 2002;15(1):75–85.

    CAS  Google Scholar 

  28. Hoe S, Young P, Chan H-K, Traini D. Introduction of the Electrical Next Generation Impactor (eNGI) and Investigation of its Capabilities for the Study of Pressurized Metered Dose Inhalers. Pharm Res. 2009;26(2):431–7.

    Article  CAS  PubMed  Google Scholar 

  29. Kotian R, Peart L, Bryner J, Byron PR. Calibration of the modified electrical low-pressure impactor (ELPI) for use with pressurized pharmaceutical aerosols. J Aerosol Med Pulm Drug Deliv. 2009;22(1):55–66.

    Article  PubMed  Google Scholar 

  30. Bur M, Huwer H, Muys L, Lehr C-M. Drug transport across pulmonary epithelial cell monolayers: Effects of particle size, apical liquid volume, and deposition technique. J Aerosol Med Pulm Drug Deliv. 2010;23(3):119–27.

    Article  CAS  PubMed  Google Scholar 

  31. Lewis DA, Young PM, Buttini F, Church T, Colombo P, Forbes B, et al. Towards the bioequivalence of pressurised metered dose inhalers 1: Design and characterisation of aerodynamically equivalent beclomethasone dipropionate inhalers with and without glycerol as a non-volatile excipient. Eur J Pharm Biopharm. 2013. doi:10.1016/j.ejpb.2013.02.014.

    Google Scholar 

Download references

Acknowledgments and Disclosures

A/Professor Traini is the recipient of an Australian Research Council Future Fellowship (project number FT12010063). A/Professor Young is the recipient of an Australian Research Council Future Fellowship (project number FT110100996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghi, M., Traini, D. & Young, P. In Vitro Cell Integrated Impactor Deposition Methodology for the Study of Aerodynamically Relevant Size Fractions from Commercial Pressurised Metered Dose Inhalers. Pharm Res 31, 1779–1787 (2014). https://doi.org/10.1007/s11095-013-1282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1282-2

KEY WORDS

Navigation