Skip to main content
Log in

Introduction of the Electrical Next Generation Impactor (eNGI) and Investigation of its Capabilities for the Study of Pressurized Metered Dose Inhalers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To introduce the design of the electrical Next Generation Impactor (eNGI), and validate its proposed function as a method of electrostatic characterization for pressurized metered dose inhaler (pMDI) formulations.

Methods

Flixotide® (fluticasone propionate), Ventolin® (salbutamol sulphate), and QVAR® (beclomethasone dipropionate) were used as model pMDIs in this study. At an airflow rate of 30 l/min, five individual actuations of each pMDI were introduced into the electrical low-pressure impactor (ELPI), Next Generation Impactor (NGI), and the eNGI. Charge profiles for each actuation were measured by the ELPI and eNGI, while mass profiles were recorded by the all three impactors.

Results

The difference in estimated mass median aerodynamic diameters and geometric standard deviations for all pMDIs using the NGI and eNGI were not found to be statistically significant (p < 0.05). The mean charge profiles from the ELPI and eNGI overlap well between 0.54 and 6.61 μm (Flixotide® and Ventolin®), and between 0.615 and 11.72 μm (QVAR®), where the majority of the impacted doses were collected. Conclusion: For the analysis of pMDIs, the eNGI is comparable to the NGI in measuring particle size distribution, while still being comparable to the ELPI in measuring charge distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. P. C. L. Kwok, and H.-K. Chan. Electrostatic charge in pharmaceutical systems. In J. Swarbrick (ed.), Encyclopedia of Pharmaceutical Technology, Taylor & Francis, London, 2005, pp. 1–14.

    Google Scholar 

  2. M. García-Hernández, P. S. Bagus, and F. Illas. A new analysis of image charge theory. Surf. Sci. 409:69–80 (1998). doi:10.1016/S0039-6028(98)00204-0.

    Article  Google Scholar 

  3. C. Melandri, G. Tarroni, V. Prodi, T. de Zaiacomo, M. Formignani, and C. C. Lombardi. Deposition of charged particles in the human airways. J. Aerosol. Sci. 14:657–669 (1983). doi:10.1016/0021-8502(83)90070-8.

    Article  Google Scholar 

  4. A. G. Bailey, A. H. Hashish, and T. J. Williams. Drug delivery by inhalation of charged particles. J. Electrostat. 44:3–10 (1998). doi:10.1016/S0304-3886(98)00017-5.

    Article  CAS  Google Scholar 

  5. W. Balachandran, W. Machowski, E. Gaura, and C. Hudson. Control of drug aerosol in human airways using electrostatic forces. J. Electrostat. 40 & 41:579–584 (1997).

    Article  Google Scholar 

  6. D. Koolpiruck, S. Prakoonwit, and W. Balachandran. Numerical modelling of inhaled charged aerosol deposition in human airways. IEEE Trans. Ind. Appl. 40:1239–1247 (2004). doi:10.1109/TIA.2004.834032.

    Article  Google Scholar 

  7. D. Saini, J. Gunamgari, C. Zulaloglou, R. A. Sims, and M. K. Mazumder. Effect of electrostatic charge and size distributions on respirable aerosol deposition in lung model. In I. I. A. Society (ed.), 39th Annual IAS Meeting (IEEE Industry Applications Society), Vol. 2, IEEE, Seattle, 2004.

  8. A. G. Bailey. Charging of solids and powders. J. Electrostat. 30:167–180 (1993). doi:10.1016/0304-3886(93)90072-F.

    Article  CAS  Google Scholar 

  9. M. D. Hogue, C. R. Buhler, C. I. Calle, T. Matsuyama, W. Luo, and E. E. Groop. Insulator–insulator contact charging and its relationship to contact pressure. J. Electrostat. 61:259–268 (2004). doi:10.1016/j.elstat.2004.03.002.

    Article  Google Scholar 

  10. M. Murtomaa, P. Harjunen, V. Mellin, V. Lehto, and E. Laine. Effect of amorphicity on the triboelectrification of lactose powder. J. Electrostat. 56:103–110 (2002). doi:10.1016/S0304-3886(02)00066-9.

    Article  CAS  Google Scholar 

  11. D. J. Lacks, and A. Levandovsky. Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. J. Electrostat. 65:107–112 (2007). doi:10.1016/j.elstat.2006.07.010.

    Article  CAS  Google Scholar 

  12. A. G. Bailey. The charging of insulator surfaces. J. Electrostat. 51–52:82–90 (2001). doi:10.1016/S0304-3886(01)00106-1.

    Article  Google Scholar 

  13. W. Glover, and H. K. Chan. Electrostatic charge characterization of pharmaceutical aerosols using electrical low-pressure impactor (ELPI). J. Aerosol. Sci. 35:755–764 (2004). doi:10.1016/j.jaerosci.2003.12.003.

    Article  CAS  Google Scholar 

  14. P. C. L. Kwok, W. Glover, and H. K. Chan. Electrostatic charge characteristics of aerosols produced from metered dose inhalers. J. Pharm. Sci. 94:2789–2799 (2005). doi:10.1002/jps.20395.

    Article  PubMed  CAS  Google Scholar 

  15. P. M. Young, A. Sung, D. Traini, P. Kwok, H. Chiou, and H. K. Chan. Influence of humidity on the electrostatic charge and aerosol performance of dry powder inhalers carrier-based systems. Pharm. Res. 24:963–970 (2007). doi:10.1007/s11095-006-9218-8.

    Article  PubMed  CAS  Google Scholar 

  16. A. G. Bailey. The inhalation and deposition of charged particles within the human lung. J. Electrostat. 42:25–32 (1997). doi:10.1016/S0304-3886(97)00134-4.

    Article  Google Scholar 

  17. P. R. Byron, J. Peart, and J. Staniforth. Aerosol electrostatics I: Properties of fine powders before and after aerosolisation by dry powder inhalers. Pharm. Res. 14:698–705 (1997). doi:10.1023/A:1012181818244.

    Article  PubMed  CAS  Google Scholar 

  18. M. Murtomaa, P. Pekkala, T. Kalliohaka, and J. Paasi. A device for aerosol measurement and sampling. J. Electrostat. 63:571–575 (2005). doi:10.1016/j.elstat.2005.03.018.

    Article  CAS  Google Scholar 

  19. M. Dawson, P. Burnell, W. Balachandran, J. Kulon, and S. Sivathasan. A novel bipolar charge measurement system for characterizing aerosols, Respiratory Drug Delivery VIII, Tucson, AZ, USA, 2002, pp. 443–445.

  20. J. Keskinen, K. Pietarinen, and M. Lehtimäki. Electrical low pressure impactor. J. Aerosol. Sci. 23:353–360 (1992). doi:10.1016/0021-8502(92)90004-F.

    Article  CAS  Google Scholar 

  21. J. C. Orban, and J. Peart. Simultaneous electrostatic charge characterization and particle size analysis of metered dose inhalers (pMDIs) using the electrical low pressure impactor. Respiratory Drug Delivery IX, 2004.

  22. M. Marjamäki, J. Keskinen, D. R. Chen, and D. Y. H. Pui. Performance evaluation of the electrical low-pressure impactor. J. Aerosol. Sci. 31:249–261 (2000). doi:10.1016/S0021-8502(99)00052-X.

    Article  Google Scholar 

  23. V. A. Marple, D. L. Roberts, F. J. Romay, N. C. Miller, K. G. Truman, M. van Oort, B. Olsson, M. J. Holroyd, J. P. Mitchell, and D. Hochrainer. Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part I: Design. J. Aerosol. Med. 16:283–299 (2003). doi:10.1089/089426803769017659.

    Article  PubMed  Google Scholar 

  24. C. Dunbar, and J. Mitchell. Analysis of cascade impactor mass distributions. J. Aerosol. Med. 18:439–451 (2005). doi:10.1089/jam.2005.18.439.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Michael Paterson, Terry Pfeiffer and Herbert Chiou for their technical advice and expertise in assisting the construction of the eNGI, and Philip Kwok for his advice on the ELPI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoe, S., Young, P.M., Chan, HK. et al. Introduction of the Electrical Next Generation Impactor (eNGI) and Investigation of its Capabilities for the Study of Pressurized Metered Dose Inhalers. Pharm Res 26, 431–437 (2009). https://doi.org/10.1007/s11095-008-9761-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9761-6

KEY WORDS

Navigation