Skip to main content

Advertisement

Log in

Nanochemoprevention by Bioactive Food Components: A Perspective

  • Perspective
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Chemoprevention through the use of bioactive food components is a practical approach for cancer control. Despite abundant efficacy data under preclinical settings, this strategy has resulted in limited success for human cancer control. Amongst many reasons, inefficient systemic delivery and bioavailability of promising chemopreventive agents are considered to significantly contribute to such a disconnect. We recently introduced a novel concept in which we utilized nanotechnology for enhancing the outcome of chemoprevention (Cancer Res. 2009; 69:1712–6) and termed it nanochemoprevention. To establish the proof-of-principle of nanotechnology for cancer management, we determined the efficacy of a well-known chemopreventive agent epigallocatechin-3-gallate (EGCG) encapsulated in polylactic acid (PLA)-polyethylene glycol (PEG) nanoparticles in preclinical settings and observed that, compared to non-encapsulated EGCG, nano-EGCG retained its biological efficacy with over 10-fold dose advantage both in cell culture system and in vivo settings in athymic nude mice implanted with human prostate cancer cells. This study laid the foundation of nanochemoprevention by bioactive food components. Since oral consumption is the most desirable and acceptable form of delivery of bioactive food components, it will be important to develop nanoparticles containing bioactive food components that are suitable for oral consumption for which experiments are underway in this laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–80.

    Article  PubMed  CAS  Google Scholar 

  2. Siddiqui IA, Afaq F, Adhami VM, Mukhtar H. Prevention of prostate cancer through custom tailoring of chemopreventive regimen. Chem Biol Interact. 2008;171:122–32.

    Article  PubMed  CAS  Google Scholar 

  3. Khan N, Afaq F, Mukhtar H. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal. 2008;10:475–510.

    Article  PubMed  CAS  Google Scholar 

  4. Syed DN, Khan N, Afaq F, Mukhtar H. Chemoprevention of prostate cancer through dietary agents: progress and promise. Cancer Epidemiol Biomarkers Prev. 2007;16:2193–203.

    Article  PubMed  CAS  Google Scholar 

  5. Milner JA. Diet and cancer: facts and controversies. Nutr Cancer. 2006;56:216–24.

    Article  PubMed  CAS  Google Scholar 

  6. Greenwald P. Clinical trials in cancer prevention: current results and perspectives for the future. J Nutr. 2004;134:3507S–12.

    PubMed  CAS  Google Scholar 

  7. Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther. 2001;90:157–77.

    Article  PubMed  CAS  Google Scholar 

  8. Amin AR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol. 2009;27:2712–25.

    Article  PubMed  CAS  Google Scholar 

  9. Bode AM, Dong Z. Cancer prevention research—then and now. Nat Rev Cancer. 2009;9:508–16.

    Article  PubMed  CAS  Google Scholar 

  10. Khan N, Adhami VM, Mukhtar H. Apoptosis by dietary agents for prevention and treatment of cancer. Biochem Pharmacol. 2008;76:1333–9.

    Article  PubMed  CAS  Google Scholar 

  11. Nishiyama N. Nanomedicine: nanocarriers shape up for long life. Nat Nanotechnol. 2007;2:203–4.

    Article  PubMed  CAS  Google Scholar 

  12. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:161–71.

    Article  PubMed  CAS  Google Scholar 

  13. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007;9:257–88.

    Article  PubMed  CAS  Google Scholar 

  14. Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer. 2006;107:459–66.

    Article  PubMed  CAS  Google Scholar 

  15. Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58:97–110.

    Article  PubMed  Google Scholar 

  16. Niemeyer CM. Semi-synthetic nucleic acid-protein conjugates: applications in life sciences and nanobiotechnology. J Biotechnol. 2001;82:47–66.

    PubMed  CAS  Google Scholar 

  17. Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M, Khwaja SI, et al. Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res. 2009;69:1712–6.

    Article  PubMed  CAS  Google Scholar 

  18. Kaul G, Amiji M. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target. 2004;12:585–91.

    Article  PubMed  CAS  Google Scholar 

  19. Kaul G, Amiji M. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm Res. 2005;22:951–61.

    Article  PubMed  CAS  Google Scholar 

  20. Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm. 2000;26:459–63.

    Article  PubMed  CAS  Google Scholar 

  21. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003;8:1112–20.

    Article  PubMed  CAS  Google Scholar 

  22. Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 2004;61:2549–59.

    Article  PubMed  CAS  Google Scholar 

  23. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263:1600–3.

    Article  PubMed  CAS  Google Scholar 

  24. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  PubMed  CAS  Google Scholar 

  25. Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine. 2005;1:101–9.

    PubMed  CAS  Google Scholar 

  26. Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev. 1995;16:215–33.

    Article  CAS  Google Scholar 

  27. Deng C, Tian H, Zhang P, Sun J, Chen X, Jing X. Synthesis and characterization of RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) triblock copolymer. Biomacromolecules. 2006;7:590–6.

    Article  PubMed  CAS  Google Scholar 

  28. Mosqueira VC, Legrand P, Morgat JL, Vert M, Mysiakine E, Gref R, et al. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharm Res. 2001;18:1411–9.

    Article  PubMed  CAS  Google Scholar 

  29. Stolnik S, Dunn SE, Garnett MC, Davies MC, Coombes AG, Taylor DC, et al. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharm Res. 1994;11:1800–8.

    Article  PubMed  CAS  Google Scholar 

  30. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  31. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res. 2006;66:2500–5.

    Article  PubMed  CAS  Google Scholar 

  32. Stuart EC, Scandlyn MJ, Rosengren RJ. Role of epigallocatechin gallate (EGCG) in the treatment of breast and prostate cancer. Life Sci. 2006;79:2329–36.

    Article  PubMed  CAS  Google Scholar 

  33. Saleem M, Adhami VM, Siddiqui IA, Mukhtar H. Tea beverage in chemoprevention of prostate cancer: a mini-review. Nutr Cancer. 2003;47:13–23.

    Article  PubMed  CAS  Google Scholar 

  34. McLarty J, Bigelow RL, Smith M, Elmajian D, Ankem M, Cardelli JA. Tea polyphenols decrease serum levels of prostate-specific antigen, hepatocyte growth factor, and vascular endothelial growth factor in prostate cancer patients and inhibit production of hepatocyte growth factor and vascular endothelial growth factor in vitro. Cancer Prev Res (Phila PA). 2009;2:673–82.

    Google Scholar 

  35. Butt MS, Sultan MT. Green tea: nature’s defense against malignancies. Crit Rev Food Sci Nutr. 2009;49:463–73.

    Article  PubMed  CAS  Google Scholar 

  36. Khan N, Mukhtar H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett. 2008;269:269–80.

    Article  PubMed  CAS  Google Scholar 

  37. Mukhtar H, Ahmad N. Green tea in chemoprevention of cancer. Toxicol Sci. 1999;52:111–7.

    PubMed  CAS  Google Scholar 

  38. Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst. 1997;89:1881–6.

    Article  PubMed  CAS  Google Scholar 

  39. Henning SM, Niu Y, Lee NH, Thames GD, Minutti RR, Wang H, et al. Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am J Clin Nutr. 2004;80:1558–64.

    PubMed  CAS  Google Scholar 

  40. Lee MJ, Maliakal P, Chen L, Meng X, Bondoc FY, Prabhu S, et al. Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomarkers Prev. 2002;11:1025–32.

    PubMed  CAS  Google Scholar 

  41. Lambert JD, Lee MJ, Lu H, Meng X, Hong JJ, Seril DN, et al. Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr. 2003;133:4172–7.

    PubMed  CAS  Google Scholar 

  42. Lambert JD, Hong J, Kim DH, Mishin VM, Yang CS. Piperine enhances the bioavailability of the tea polyphenol (−)-epigallocatechin-3-gallate in mice. J Nutr. 2004;134:1948–52.

    PubMed  CAS  Google Scholar 

  43. Cao Y, Cao R. Angiogenesis inhibited by drinking tea. Nature. 1999;398:381.

    Article  PubMed  CAS  Google Scholar 

  44. Mantena SK, Roy AM, Katiyar SK. Epigallocatechin-3-gallate inhibits photocarcinogenesis through inhibition of angiogenic factors and activation of CD8+ T cells in tumors. Photochem Photobiol. 2005;81:1174–9.

    Article  PubMed  CAS  Google Scholar 

  45. Shankar S, Ganapathy S, Hingorani SR, Srivastava RK. EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci. 2008;13:440–52.

    Article  PubMed  Google Scholar 

  46. Tang FY, Chiang EP, Shih CJ. Green tea catechin inhibits ephrin-A1-mediated cell migration and angiogenesis of human umbilical vein endothelial cells. J Nutr Biochem. 2007;18:391–9.

    Article  PubMed  CAS  Google Scholar 

  47. Siddiqui IA, Malik A, Adhami VM, Asim M, Hafeez BB, Sarfaraz S, et al. Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene. 2008;27:2055–63.

    Article  PubMed  CAS  Google Scholar 

  48. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 1999;281:1591–7.

    Article  PubMed  CAS  Google Scholar 

  49. Adhami VM, Malik A, Zaman N, Sarfaraz S, Siddiqui IA, Syed DN, et al. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin Cancer Res. 2007;13:1611–9.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83:761–9.

    Article  PubMed  CAS  Google Scholar 

  51. Han DW, Lee JJ, Jung DY, Park JC, Hyon SH. Development of epigallocatechin gallate-eluting polymeric stent and its physicochemical, biomechanical and biological evaluations. Biomed Mater. 2009;4:44104.

    Article  PubMed  CAS  Google Scholar 

  52. Italia JL, Datta P, Ankola DD, Kumar MNVR. Nanoparticles enhance per oral bioavailability of poorly available molecules: epigallocatechin gallate nanoparticles ameliorates cyclosporine induced nephrotoxicity in rats at three times lower dose than oral solution. Journal of Biomedical Nanotechnology. 2008;4:304–12.

    Article  CAS  Google Scholar 

  53. Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater. 2008;4:1752–61.

    Article  PubMed  CAS  Google Scholar 

  54. Thangapazham RL, Puri A, Tele S, Blumenthal R, Maheshwari RK. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int J Oncol. 2008;32:1119–23.

    PubMed  CAS  Google Scholar 

  55. Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine. 2009.

  56. Merrell JG, McLaughlin SW, Tie L, Laurencin CT, Chen AF, Nair LS. Curcumin loaded poly(epsilon-caprolactone) nanofibers: diabetic wound dressing with antioxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol. 2009;36(12):1149–56.

    Article  PubMed  CAS  Google Scholar 

  57. Li J, Wang Y, Yang C, Wang P, Oelschlager DK, Zheng Y, et al. Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1. Mol Pharmacol. 2009;76:81–90.

    Article  PubMed  CAS  Google Scholar 

  58. Shao J, Li X, Lu X, Jiang C, Hu Y, Li Q, et al. Enhanced growth inhibition effect of resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels. Colloids Surf B Biointerfaces. 2009;72:40–7.

    Article  PubMed  CAS  Google Scholar 

  59. Lu X, Ji C, Xu H, Li X, Ding H, Ye M, et al. Resveratrol-loaded polymeric micelles protect cells from Abeta-induced oxidative stress. Int J Pharm. 2009;375:89–96.

    Article  PubMed  CAS  Google Scholar 

  60. Narayanan NK, Nargi D, Randolph C, Narayanan BA. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer. 2009;125:1–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Mukhtar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddiqui, I.A., Mukhtar, H. Nanochemoprevention by Bioactive Food Components: A Perspective. Pharm Res 27, 1054–1060 (2010). https://doi.org/10.1007/s11095-010-0087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0087-9

KEY WORDS

Navigation