Skip to main content

Advertisement

Log in

Improvement of Seed Germination Rate, Agronomic Traits, Enzymatic Activity and Nutritional Composition of Bread Wheat (Triticum aestivum) Using Low-Frequency Glow Discharge Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Plasma agriculture is an emerging field. In this report, we studied the effect of medium pressure (~ 10 torr) low-frequency (3–5 kHz) glow discharge (LFGD) plasma on various agronomical and physiological attributes in wheat. Wheat seeds treated by LFGD plasma generated from Argon–Oxygen (Ar + O2) gas mixture and air showed a remarkable enhancement in seed germination by 12.38% and 7.14% respectively. Also, the morpho-physiological features significantly improved due to plasma treatment relative to control. In germinated wheat seedlings, H2O2 concentration markedly increased due to plasma treatments, suggesting that LFGD may be involved in nitrogen signaling in wheat. The SOD activity significantly increased in wheat seedlings subjected to Ar + O2 plasma, while APX activity showed a significant increase only in the shoot of wheat plants in the same condition. Besides, both plasma treatments (Ar + O2 and Air) caused a significant increase in CAT activity in the shoot but not in the root compared to non-treated plants. Analysis of wheat plants germinated from plasma treated seeds showed a notable increase in total soluble sugar and protein subjected to Ar + O2 plasma treatment. Results also revealed a significant increase in TGM, iron, manganese, fat, and ash content while moisture content significantly decreased in wheat grain due to plasma treatments relative to controls. These findings explore the potentialities of LFGD plasma in boosting germination, growth, and nutritional traits of wheat plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao C et al (2016) Field warming experiments shed light on the wheat yield response to temperature in China. Nat Commun 7(1):1–8

    Article  Google Scholar 

  2. Ortiz R et al (2008) Climate change: can wheat beat the heat? Agric Ecosyst Environ 126(1–2):46–58

    Article  Google Scholar 

  3. Ling L et al (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4:5859

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rahman MM et al (2018) Mechanisms and signaling associated with LPDBD plasma mediated growth improvement in wheat. Sci Rep 8

  5. Langmuir I (1929) Tonks., L. Ion oscillations in a warm plasma. Phys Rev 33:195–210

    Google Scholar 

  6. Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D (2015) Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep 5:13033

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jiayun T, Rui HE, Xiaoli Z, Ruoting Z, Weiwen C, Size Y (2014) Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of Andrographis paniculata. Plasma Sci Technol 16(3):260

    Article  Google Scholar 

  8. Dhayal M, Lee S-Y, Park S-U (2006) Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum 80(5):499–506

    Article  CAS  Google Scholar 

  9. Zhou Z, Huang Y, Yang S, Chen W (2011) Introduction of a new atmospheric pressure plasma device and application on tomato seeds. Agric Sci 2(1):23–27

    Google Scholar 

  10. Sera B, Spatenka P, Sery M, Vrchotová N, Hruskova I (2010) Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci 38(10):2963–2968

    Article  Google Scholar 

  11. Sera B, Sery M, Stranak V, Spatenka P, Tichy M (2009) Does cold plasma change the seed dormancy? Study on seeds of Lambs Quarters (Chenopodium album agg.). Plasma Sci Technol 11(6):750–754

    Article  CAS  Google Scholar 

  12. Šerá B, Gajdová I, Šerý M, Špatenka P (2013) New physicochemical treatment method of poppy seeds for agriculture and food industries. Plasma Sci Technol 15(9):935

    Article  Google Scholar 

  13. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2:741

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sera B, Stranak V, Serý M, Tichý M, Spatenka P (2008) Germination of Chenopodium album in response to microwave plasma treatment. Plasma Sci Technol 10(4):506

    Article  CAS  Google Scholar 

  15. Chen HH, Chen YK, Chang HC (2012) Evaluation of physicochemical properties of plasma treated brown rice. Food Chem 135(1):74–79

    Article  CAS  Google Scholar 

  16. Henselová M, Slováková Ľ, Martinka M, Zahoranová A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia (Bratisl) 67(3):490–497

    Article  Google Scholar 

  17. Zhou ZW, Huang YF, Yang SZ, Xiong DY (2012) Progress in electromagnetics research symposium proceedings. Kuala Lumpur Malays 1577:2012

    Google Scholar 

  18. Jiang J et al (2014) Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). PLoS ONE 9(5):e97753

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ming-jing H (2010) Physiological effect of plasma on wheat seed germination. J Shanxi Agric Sci 11:9

  20. Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  21. Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172(5):876–887

    Article  CAS  Google Scholar 

  22. Besson-Bard A et al (2009) Current view of nitric oxide-responsive genes in plants. Plant Sci 177(4):302–309

    Article  CAS  Google Scholar 

  23. Giba Z, Grubišić D, Konjević R (2006) Seeking the role of NO in breaking seed dormancy. In: Nitric oxide in plant growth, development and stress physiology. Springer, Berlin, pp 91–111

  24. Bethke PC, Libourel IGL, Jones RL (2018) Nitric oxide in seed dormancy and germination. In: Annual plant reviews online, pp 153–175

  25. Roy NC, Hasan MM, Talukder MR, Hossain MD, Chowdhury AN (2018) Prospective applications of low frequency glow discharge plasmas on enhanced germination, growth and yield of wheat. Plasma Chem Plasma Process 38(1):13–28

    Article  CAS  Google Scholar 

  26. Goud PB, Kachole MS (2012) Antioxidant enzyme changes in neem, pigeonpea and mulberry leaves in two stages of maturity. Plant Signal Behav 7(10):1258–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun M, Zigman S (1978) An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem 90(1):81–89

    Article  CAS  PubMed  Google Scholar 

  28. Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171(3):382–388

    Article  CAS  PubMed  Google Scholar 

  29. Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139(1):9–17

    Article  CAS  PubMed  Google Scholar 

  30. Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24(12):1337–1344

    Article  CAS  Google Scholar 

  31. Orozco-Cárdenas ML, Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130(1):487–493

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  33. Guy C, Haskell D, Neven L, Klein P, Smelser C (1992) Hydration-state-responsive proteins link cold and drought stress in spinach. Planta 188(2):265–270

    Article  CAS  PubMed  Google Scholar 

  34. Kabir AH, Hossain MM, Khatun MA, Sarkar MR, Haider SA (2017) Biochemical and molecular mechanisms associated with Zn deficiency tolerance and signaling in rice (Oryza sativa L.). J Plant Interact 12(1):447–456

    Article  CAS  Google Scholar 

  35. Zeb A, Zahir A, Ahmad T, Abdumanon A (2006) Physiochemical characteristics of wheat varieties growing in the same and different ecological regions of Pakistan. Pak J Biol Sci 9(9):1823–1828

    Article  CAS  Google Scholar 

  36. Horwitz W (2000) Official methods of analysis of the AOAC. Association of Official Analytical Chemists

  37. Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E (2015) Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot 66(13):4013–4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heneen WK, Brismar K (1987) Scanning electron microscopy of mature grains of rye, wheat and triticale with emphasis on grain shrivelling. Hereditas 107(2):147–162

    Article  Google Scholar 

  39. Volin JC, Denes FS, Young RA, Park SMT (2000) Modification of seed germination performance through cold plasma chemistry technology. Crop Sci 40(6):1706–1718

    Article  CAS  Google Scholar 

  40. Meiqiang Y, Mingjing H, Buzhou M, Tengcai M (2005) Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield. Plasma Sci Technol 7(6):3143

    Article  Google Scholar 

  41. Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour Technol 99(11):5104–5109

    Article  CAS  PubMed  Google Scholar 

  42. Ono R, Hayashi N (2015) Variation of antioxidative activity and growth enhancement of Brassicaceae induced by low-pressure oxygen plasma. Jpn J Appl Phys 54(6S2):06GD03

  43. Kitazaki S, Koga K, Shiratani M, Hayashi N (2012) Growth enhancement of radish sprouts induced by low pressure O2 radio frequency discharge plasma irradiation. Jpn J Appl Phys 51(1S):01AE01

  44. Shiratani M, Sarinont T, Amano T, Hayashi N, Koga K (2016) Plant growth response to atmospheric air plasma treatments of seeds of 5 plant species. MRS Adv 1(18):1265–1269

    Article  CAS  Google Scholar 

  45. Wu ZH, Chi LH, Bian SF, Xu KZ (2007) Effects of plasma treatment on maize seeding resistance. J Maize Sci 15:111–113

    CAS  Google Scholar 

  46. Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331(10):806–814

    Article  CAS  PubMed  Google Scholar 

  47. Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125(4):1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hatirli SA, Ozkan B, Fert C (2006) Energy inputs and crop yield relationship in greenhouse tomato production. Renew Energy 31(4):427–438

    Article  Google Scholar 

  49. Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221

    Article  CAS  Google Scholar 

  50. Kabir AH et al (2019) Reduction of cadmium toxicity in wheat through plasma technology. PLoS One 14(4)

  51. Jeevan Kumar SP, Rajendra Prasad S, Banerjee R, Thammineni C (2015) Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann Bot 116(4):663–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krohling CA et al (2016) Ecophysiology of iron homeostasis in plants. Soil Sci Plant Nutr 62(1):39–47

    Article  CAS  Google Scholar 

  53. de Vasconcelos ACF, Zhang X, Ervin EH, Kiehl JDC (2009) Enzymatic antioxidant responses to biostimulants in maize and soybean subjected to drought. Sci Agric 66(3):395–402

    Article  Google Scholar 

  54. Saberi M, Modarres-Sanavy SAM, Zare R, Ghomi H (2018) Amelioration of photosynthesis and quality of wheat under non-thermal radio frequency plasma treatment. Sci Rep 8(1):11655

    Article  PubMed  PubMed Central  Google Scholar 

  55. Puač N et al (2018) Activity of catalase enzyme in Paulownia tomentosa seeds during the process of germination after treatments with low pressure plasma and plasma activated water. Plasma Process Polym 15(2):1700082

    Article  Google Scholar 

  56. Noctor G et al (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35(2):454–484

    Article  CAS  PubMed  Google Scholar 

  57. Tian B et al (2010) Physicochemical changes of oat seeds during germination. Food Chem 119(3):1195–1200

    Article  CAS  Google Scholar 

  58. Berry JA, Downton WJS (1982) Environmental regulation of photosynthesis. Photosynthesis 2:263–343

    CAS  Google Scholar 

  59. Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11(11):115020

    Article  Google Scholar 

  60. Del Blanco IA, Rajaram S, Kronstad WE, Reynolds MP (2000) Physiological performance of synthetic hexaploid wheat-derived populations. Crop Sci 40(5):1257–1263

    Article  Google Scholar 

  61. Ikhtiar K, Alam Z (2007) Nutritional composition of Pakistani wheat varieties. J Zhejiang Univ Sci B 8(8):555–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Taneja S, Gupta K, Wagle DS, Dhindsa KS (1983) Biological evaluation of wheat varieties. J Food Sci Technol 20(6):319–320

    CAS  Google Scholar 

  63. Finney PL, Bains GS, Hoseney RC, Lineback DR (1973) Quality of Indian wheats. Cereal Sci Today 18:392–397

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Abu Reza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohan, M.S.R., Hasan, M., Hossain, M.F. et al. Improvement of Seed Germination Rate, Agronomic Traits, Enzymatic Activity and Nutritional Composition of Bread Wheat (Triticum aestivum) Using Low-Frequency Glow Discharge Plasma. Plasma Chem Plasma Process 41, 923–944 (2021). https://doi.org/10.1007/s11090-021-10158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10158-7

Keywords

Navigation