Skip to main content
Log in

Plasma activated water: the next generation eco-friendly stimulant for enhancing plant seed germination, vigor and increased enzyme activity, a study on black gram (Vigna mungo L.)

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Chemical fertilization in agriculture is threatening to the ecosystem. Therefore, the use of eco-friendly stimulant for crop revolution is highly desirable. This study investigates the effects of plasma activated water (PAW) created by treating de-ionized water with high voltage discharge on black gram. Results showed significant improvements in different agronomic traits. Significant changes in H2O2, a reactive-oxygen-species (ROS) were observed in seeds, leaves, and roots. Increase in catalase (ROS scavenger) was also observed in roots of plants grown from 3 and 6 min PAW treated seeds which was consistent with the upregulation of VmCAT gene. This reveals that PAW is associated with elevated H2O2 in black gram in a tightly regulated manner by the upregulation of CAT activity resulted in increased germination, growth, and development. Non-covalent binding pattern of H2O2 with CAT through docking strongly supports this phenomenon. It does suggest that the increase of H2O2 tightly regulated by the upregulation of CAT provides optimum conditions for improved seed germination and growth in black gram. These findings reveal the benefits of PAW for enhanced crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7(4):1822–1832

    Article  CAS  Google Scholar 

  2. Islam M, Prodhan A, Islam M, Uddin M (2010) Effect of plant growth regulator (GABA) on morphological characters and yield of black gram (Vigna mungo L.). J Agric Res 48(1):76–77

    Google Scholar 

  3. Mian A (1976) Grow more pulses to keep your pulse well, an Assay of Bangladesh pulses. Department of Agron, BAU, Mymensingh: 11–15

  4. Mony S, Haque M, Karim M, Roy S (2013) Callus Induction and Plantlet Regeneration in Blackgram. Progress Agric 19(2):27–35

    Article  Google Scholar 

  5. Ali M, Abbas G, Mohy-ud-Din Q, Ullah K, Abbas G, Aslam M (2010) Response of mungbean (Vigna radiata) to phosphatic fertilizer under arid climate. J Anim Plant Sci 20(2):83–86

    Google Scholar 

  6. Zhou Z, Huang Y, Yang S, Chen W (2011) Introduction of a new atmospheric pressure plasma device and application on tomato seeds. Agric Sci 2(1):23–27

    Google Scholar 

  7. Lindsay A, Byrns B, King W, Andhvarapou A, Fields J, Knappe D, Fonteno W, Shannon S (2014) Fertilization of radishes, tomatoes, and marigolds using a large-volume atmospheric glow discharge. Plasma Chem Plasma Process 34(6):1271–1290

    Article  CAS  Google Scholar 

  8. Zhang X, Liu D, Zhou R, Song Y, Sun Y, Zhang Q, Niu J, Fan H, Yang S-z (2014) Atmospheric cold plasma jet for plant disease treatment. Appl Phys Lett 104(4):043702

    Article  CAS  Google Scholar 

  9. Salek Ahmed Sajib NCR, Abu Reza M, Talukder MR (2018) Atmospheric Pressure gliding arc discharge (APGAD) O2 plasma jet for inactiva-tion of Blast Fungus (Magnaporthe grisea). In: Proceedings of international conference on systems and processes in physics, chemistry and biology

  10. Junior CA, de Oliveira Vitoriano J, Da Silva DLS, de Lima Farias M, de Lima Dantas NB (2016) Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma. Sci Rep 6:33722

    Article  CAS  Google Scholar 

  11. Guo Q, Wang Y, Zhang H, Qu G, Wang T, Sun Q, Liang D (2017) Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci Rep 7(1):16680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ling L, Jiafeng J, Jiangang L, Minchong S, Xin H, Hanliang S, Yuanhua D (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4:5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. CR Biol 331(10):806–814

    Article  CAS  Google Scholar 

  14. Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  15. El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3(3):175–182

    Article  PubMed  PubMed Central  Google Scholar 

  16. Porto CL, Ziuzina D, Los A, Boehm D, Palumbo F, Favia P, Tiwari B, Bourke P, Cullen PJ (2018) Plasma activated water and airborne ultrasound treatments for enhanced germination and growth of soybean. Innov Food Sci Emerg Technol 49:13–19

    Article  CAS  Google Scholar 

  17. Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Hofman-Caris RCHM, Maric D, Reid JP, Ceriani E, Fernandez Rivas D, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts EC, Pawlat J, Petrovic ZL, Pflieger R, Reuter S, Schram DC, Schröter S, Shiraiwa M, Tarabová B, Tsai PA, Verlet JRR, von Woedtke T, Wilson KR, Yasui K, Zvereva G (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sour Sci Technol. https://doi.org/10.1088/0963-0252/25/5/053002

    Article  Google Scholar 

  18. Takaki K, Takahata J, Watanabe S, Satta N, Yamada O, Fujio T, Sasaki Y (2013) Improvements in plant growth rate using underwater discharge. In: Journal of physics: conference series, vol 1. IOP Publishing, p 012140

  19. Naumova I, Maksimov A, Khlyustova A (2011) Stimulation of the germinability of seeds and germ growth under treatment with plasma-activated water. Surf Eng Appl Electrochem 47(3):263–265

    Article  Google Scholar 

  20. Klassen NV, Marchington D, McGowan HC (1994) H2O2 determination by the I3-method and by KMnO4 titration. Anal Chem 66(18):2921–2925

    Article  CAS  Google Scholar 

  21. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2:741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou R, Zhou R, Zhang X, Zhuang J, Yang S, Bazaka K, Ostrikov KK (2016) Effects of atmospheric-pressure N2, He, air, and O2 microplasmas on mung bean seed germination and seedling growth. Sci Rep 6:32603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. In: Circular California agricultural experiment station 347 (2nd ed)

  24. Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Portland Press Limited, Cape Elizabeth

    Book  Google Scholar 

  25. Guy C, Haskell D, Neven L, Klein P, Smelser C (1992) Hydration-state-responsive proteins link cold and drought stress in spinach. Planta 188(2):265–270

    Article  CAS  PubMed  Google Scholar 

  26. Dubois M, Gilles KA, Hamilton JK, Pt Rebers, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  27. Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24(12):1337–1344

    Article  CAS  Google Scholar 

  28. Orozco-Cárdenas ML, Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130(1):487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goud PB, Kachole MS (2012) Antioxidant enzyme changes in neem, pigeonpea and mulberry leaves in two stages of maturity. Plant Signal Behav 7(10):1258–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun M, Zigman S (1978) An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem 90(1):81–89

    Article  CAS  PubMed  Google Scholar 

  31. Almeselmani M, Deshmukh P, Sairam R, Kushwaha S, Singh T (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171(3):382–388

    Article  CAS  PubMed  Google Scholar 

  32. Rahman MM, Sajib SA, Rahi MS, Tahura S, Roy NC, Parvez S, Reza MA, Talukder MR, Kabir AH (2018) Mechanisms and signaling associated with LPDBD plasma mediated growth improvement in wheat. Sci Rep 8:10498. https://doi.org/10.1038/s41598-018-28960-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  34. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Krieger E, Vriend G (2015) New ways to boost molecular dynamics simulations. J Comput Chem 36(13):996–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roy N, Talukder M (2018) Effect of pressure on the properties and species production in gliding arc Ar, O2, and air discharge plasmas. Phys Plasmas 25(9):093502

    Article  CAS  Google Scholar 

  37. Roy N, Talukder M, Chowdhury A (2017) OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet. Plasma Sci Technol 19(12):125402

    Article  CAS  Google Scholar 

  38. Park HS, Kim SJ, Joh H, Chung T, Bae S, Leem S (2010) Optical and electrical characterization of an atmospheric pressure microplasma jet with a capillary electrode. Phys Plasmas 17(3):033502

    Article  CAS  Google Scholar 

  39. Chilukuri A, Swanson BG (1991) Microstructure of adzuki beans (Vigna angularis cv. Express). Food Struct 10(2):3

    Google Scholar 

  40. Lobanov MY, Bogatyreva N, Galzitskaya O (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42(4):623–628

    Article  CAS  Google Scholar 

  41. Su L, Lan Q, Pritchard HW, Xue H, Wang X (2016) Reactive oxygen species induced by cold stratification promote germination of Hedysarum scoparium seeds. Plant Physiol Biochem 109:406–415

    Article  CAS  PubMed  Google Scholar 

  42. Chandana L, Reddy PMK, Subrahmanyam C (2015) Atmospheric pressure non-thermal plasma jet for the degradation of methylene blue in aqueous medium. Chem Eng J 282:116–122

    Article  CAS  Google Scholar 

  43. Nath D, Dasgupta T (2015) Study on seed coat of some Vigna species following scanning electron microscopy (SEM). Int J Sci Res Publ 5(9):1–6. http://www.ijsrp.org/research-paper-0915/ijsrp-p4590.pdf

    Google Scholar 

  44. Bykova NV, Hu J, Ma Z, Igamberdiev AU (2015) The role of reactive oxygen and nitrogen species in bioenergetics, metabolism, and signaling during seed germination. In: Gupta K and Igamberdiev A (eds) Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants, vol 23. Signaling and Communication in Plants. Springer, Cham. Switzerland, pp 177–195

    Google Scholar 

  45. Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16(2):332–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157(2):183–193

    Article  CAS  Google Scholar 

  47. Planchet E, Jagadis Gupta K, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41(5):732–743

    Article  CAS  PubMed  Google Scholar 

  48. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394(6693):585

    Article  CAS  PubMed  Google Scholar 

  49. Thomas DD, Liu X, Kantrow SP, Lancaster JR (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci 98(1):355–360

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, Ye N, Liu R, Chen M, Zhang J (2010) H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot 61(11):2979–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hatirli SA, Ozkan B, Fert C (2006) Energy inputs and crop yield relationship in greenhouse tomato production. Renew Energy 31(4):427–438

    Article  Google Scholar 

  52. Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann KD, Von Woedtke T (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process Polym 7(3–4):250–257

    Article  CAS  Google Scholar 

  53. Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221

    Article  CAS  Google Scholar 

  54. Ryan J, Miyamoto S, Stroehlein J (1975) Effect of acidity on germination of some grasses and alfalfa. Rangel Ecol Manag 28(2):154–155

    Article  Google Scholar 

  55. Zhang S, Li L, Zhang C, Li G (2011) ALA altered ABA content of winter oilseed rape (Brassica napus L.) seedling. Agric Sci Technol Hunan 12(4):484–591

    CAS  Google Scholar 

  56. Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11(11):115020

    Article  CAS  Google Scholar 

  57. Park DP, Davis K, Gilani S, Alonzo C-A, Dobrynin D, Friedman G, Fridman A, Rabinovich A, Fridman G (2013) Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield. Curr Appl Phys 13:S19–S29

    Article  Google Scholar 

  58. Henselová M, Slováková Ľ, Martinka M, Zahoranová A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 67(3):490–497

    Article  CAS  Google Scholar 

  59. Šerá B, Šerý M, Štrañák V, Špatenka P (2009) Does cold plasma affect breaking dormancy and seed germination? A study on seeds of Lamb’s Quarters (Chenopodium album agg.). Plasma Sci Technol 11(6):750

    Article  Google Scholar 

  60. Berry JA, Downton WJS (1982) Environmental regulation of photosynthesis. Photosynthesis 2:263–343

    CAS  Google Scholar 

  61. Vasconcelos ACFd, Zhang X, Ervin EH, Kiehl JdC (2009) Enzymatic antioxidant responses to biostimulants in maize and soybean subjected to drought. Sci Agric 66(3):395–402

    Article  Google Scholar 

  62. Jiang F (2003) Prediction of protein secondary structure with a reliability score estimated by local sequence clustering. Protein Eng 16(9):651–657

    Article  CAS  PubMed  Google Scholar 

  63. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58(6):899–907

    Article  CAS  PubMed  Google Scholar 

  64. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9(2):91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao G-J, Liu J-Y, Zhou L-C, Han K-L (2007) Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J Phys Chem B 111(30):8940–8945

    Article  CAS  PubMed  Google Scholar 

  66. Gao J, Bosco DA, Powers ET, Kelly JW (2009) Localized thermodynamic coupling between hydrogen bonding and microenvironment polarity substantially stabilizes proteins. Nat Struct Mol Biol 16(7):684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC (2016) Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv 2(3):e1501240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Castro-Alvarez A, Costa A, Vilarrasa J (2017) The performance of several docking programs at reproducing protein–macrolide-like crystal structures. Molecules 22(1):136

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Mamunur Rashid Talukder would like to thank Ministry of Education, Government of the People’s Republic of Bangladesh, for partial financial support to carry out research work under Grant No.: LS2017544. Authors are also grateful to Invent Technologies Limited, Bangladesh for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

SAS performed most of the experiments and prepared the draft manuscript. MB, SM, MM, FH, FBO and KMFH assisted in some biochemical analysis. NCR and MRT performed plasma treatment on seeds. AHK provided valuable advice during the research work. MAR supervised the whole work and revised the manuscript along with MRT.

Corresponding author

Correspondence to Md Abu Reza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajib, S.A., Billah, M., Mahmud, S. et al. Plasma activated water: the next generation eco-friendly stimulant for enhancing plant seed germination, vigor and increased enzyme activity, a study on black gram (Vigna mungo L.). Plasma Chem Plasma Process 40, 119–143 (2020). https://doi.org/10.1007/s11090-019-10028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10028-3

Keywords

Navigation