Skip to main content

Advertisement

Log in

Combined Effects of Air Plasma Seed Treatment and Foliar Application of Plasma Activated Water on Enhanced Paddy Plant Growth and Yield

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Eco-friendly plasma technology is appeared as promising for the improvement of crop yield and hence it was applied to study the paddy plant growth and yield. Applications of plasma technology in this study are two-fold: (1) paddy seeds (Oryza sativa L.) were treated with low pressure (100 torr) glow air discharge (LPGAD) plasma for duration of 30, 60, 90, 120 and 150 s for finding the highest germination rate for field application, and (2) plasma activated waters (PAWs) were prepared and applied as foliar spray to the plants grown from the treated seeds to investigate the combined effects on plant growth, yield and total soluble protein and sugar concentrations in the produced paddy grains. Seedlings grown from the 90 s LPGAD plasma treated seeds, depending on the results obtained from seed germination test, were transplanted in the field and PAWs were applied 1–5 times during vegetative growth stage of the paddy plants. The results reveal that (a) the maximum paddy seed germination rate of ~ 7% with respect to control was obtained from 90 s treatment duration, out of five treatment durations, with LPGAD plasma, (b) plants growth parameters were enhanced due to the combined effects of plasma seed treatment along with PAW application, (c) defense mechanisms of plants were improved through enhancement of enzymatic activities, (d) concentrations of total soluble protein and sugar were enhanced in the paddy grains, and (e) finally yield was increased by ~ 16.67%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations, FAO, http://www.fao.org/faostat/en/. Accessed 03 Dec 2020

  2. Štěpánová V, Slavíček P, Kelar J, Prášil J, Smékal M, Stupavská M, Jurmanová J, Černák M (2017) Plasma Process Polym:e1700076

  3. Mošovská S, Medvecká V, Halászová N, Ďurina P, Valíka Ľ, Mikulajová A, Zahoranová A (2018) Food Res Int 106:862–869

    Article  PubMed  Google Scholar 

  4. Šerá B, Šerý M, Štrañák V, Špatenka P (2009) Plasma Sci Technol 11:750–754

    Article  Google Scholar 

  5. Los A, Ziuzina D, Boehm D, Cullen PJ, Bourke P (2019) Plasma Process Polym e1800148:1–12

    Google Scholar 

  6. Zhou R, Zhou R, Zhang X, Zhuang J, Yang S, Bazaka K, Ostrikov K (2016) Sci Rep 6:32603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ling L, Jiafeng J, Jiangang L, Minchong S, Xin H et al (2014) Sci Rep 4:5859

    Article  PubMed  PubMed Central  Google Scholar 

  8. Junior CA, Vitoriano JO, Da Silva DLS, Farias MFL, Dantas NBL (2016) Sci Rep 6:33722

    Article  Google Scholar 

  9. Rahman MM, Sajib SA, Sifat MS, Tahura S, Roy NC, Parvez S, Reza MA, Talukder MR, Kabir AH (2018) Sci Rep 8:10498

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roy NC, Hasan MM, Talukder MR, Hossain MD, Chowdhury AN (2018) Plasma Chem Plasma Process 38:13–28

    Article  CAS  Google Scholar 

  11. Roy NC, Hasan MM, Kabir AH, Reza MA, Talukder MR, Chowdhury AN (2018) Plasma Sci Technol 20:115501

    Article  Google Scholar 

  12. Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D (2015) Sci Rep 4:5859

    Article  Google Scholar 

  13. Kabir AH, Rahman MM, Das U, Sarkar U, Roy NC, Reza MA, Talukder MR, Uddin MA (2019) PLoS ONE 14(4):e0214509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mitra A, Li YF, Klämp TG, Shimizu T, Jeon J et al (2014) Food Bioprocess Technol 7:645–653

    Article  CAS  Google Scholar 

  15. Zhou R, Zhou R, Prasad K, Fang Z, Speight R, Bazaka K, Ostrikov K (2018) Green Chem 20:5276–5284

    Article  CAS  Google Scholar 

  16. Ochi A, Konishi H, Ando S, Sato K, Yokoyama K, Tsushima S, Yoshida S, Morikawa T, Kaneko T, Takahashi H (2017) Plant Pathol 66:67–76

    Article  CAS  Google Scholar 

  17. Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R, Valdramidis VP (2018) Trends Food Sci Technol 77:21–31

    Article  CAS  Google Scholar 

  18. Takashima K, Hu Y, Goto T, Sasaki S, Kaneko T (2020) J Phys D Appl Phys 53:354004

    Article  CAS  Google Scholar 

  19. Park DP, Davis K, Gilani S, Alonzo CA, Dobrynin D, Friedman G, Fridman A, Rabinovich A, Fridman G (2013) Curr Appl Phys 13:S19–S29

    Article  Google Scholar 

  20. Penado KNM, Mahinay CLS, Culaba IB (2018) Jpn J Appl Phys 57:01AG08

    Article  Google Scholar 

  21. Swiecimska M, Tulik M, Šerá B, Golinska P, Tomeková J, Medvecká V, Bujdáková H, Oszako T, Zahoranová A, Šerý M (2020) Forests 11:837

    Article  Google Scholar 

  22. Zhao YM, Ojha S, Burgess CM, Sun DW, Tiwari BK (2020) J Appl Microbiol 129:1248–1260

    Article  CAS  PubMed  Google Scholar 

  23. Liao X, Bai Y, Muhammad AI, Liu D, Hu Y, Ding T (2020) J Phys D Appl Phys 53:064003

    Article  CAS  Google Scholar 

  24. Islam S, Omar FB, Sajib SA, Roy NC, Reza MA, Hasan M, Talukder MR, Kabir AH (2019) Gesunde Pflanzen 71:175–185

    Article  Google Scholar 

  25. Sajib SA, Billah M, Mahmud S, Miah M, Hossain F, Omar FB, Roy NC, Hoque KMF, Talukder MR, Kabir AH, Reza MA (2020) Plasma Chem Plasma Process 40:119–143

    Article  CAS  Google Scholar 

  26. Jo YK, Cho J, Tsai TC, Staack D, Kang MH, Roh JH, Shin DB, Cromwell W, Gross D (2014) Crop Sci 54:796–803

    Article  CAS  Google Scholar 

  27. Kaushik NK, Ghimire B, Li Y, Adhikari M, Veerana M, Kaushik N, Jha N, Adhikari B, Lee SJ, Masur K, von Woedtke T, Weltmann KD, Choi EH (2018) Biol Chem 400(1):39–62

    Article  PubMed  Google Scholar 

  28. Gorbanev Y, Maldonado AP, Bogaerts A (2018) Anal Chem 90(22):13151–13158

    Article  CAS  PubMed  Google Scholar 

  29. Muller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Luebner-Metzger G (2009) Plant Physiol 150:1855–1865

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dien DC, Mochizuki T, Yamakawa T (2019) Plant Prod Sci 22(4):530–545

    Article  CAS  Google Scholar 

  31. Roy NC, Talukder MR (2018) Phys Plasmas 25:093502–093508

    Article  Google Scholar 

  32. Takahata J, Takaki K, Satta N, Takahashi K, Fujio T, Sasaki Y (2015) Jpn J Appl Phys 54:01AG07-6

    Article  Google Scholar 

  33. Sivachandiran L, Khacef A (2017) RSC Adv 7:1822–1832

    Article  CAS  Google Scholar 

  34. Maniruzzaman M, Sinclair AJ, Cahill DM, Wang X, Dai XJ (2017) Plasma Chem Plasma Process 37:1393–1404

    Article  CAS  Google Scholar 

  35. Yayci A, Baraibar AG, Krewing M, Fueyo EF, Hollmann F, Alcalde M, Kourist R, Bandow JE (2020) Chem Sus Chem 13:2072–2079

    Article  CAS  Google Scholar 

  36. Zhou R, Zhou R, Wang P, Xian Y, Mai-Prochnow A, Lu X, Cullen PJ, Ostrikov K, Bazaka K (2020) J Phys D Appl Phys 53:303001–303027

    Article  CAS  Google Scholar 

  37. Filatova I, Lyushkevich V, Goncharik S, Zhukovsky A, Krupenko N, Kalatskaja J (2020) J Phys D Appl Phys 53:244001–244009

    Article  CAS  Google Scholar 

  38. Yadav S, Kanwar RS (2018) Plant Pathol J 17(1):33–38

    Article  CAS  Google Scholar 

  39. LIFBASE simulation software. http://www.sri.com/cem/lifbase

  40. Rashid MM, Rashid M, Hasan MM, Talukder MR (communicated)

  41. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Sci Rep 2:741

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E (2015) J Exp Bot 66:4013–4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. International Seed Testing Association (ISTA), Zurichstr. 50, CH-8303, Bassersdorf, Switzerland, 2018

  44. Hara Y (1999) Plant Prod Sci 2:129–135

    Article  Google Scholar 

  45. Su S, Zhou Y, Qin JG, Yao W, Ma Z (2010) J Freshw Ecol 25:531–538

    Article  CAS  Google Scholar 

  46. Lichtenthaler HK (1987) Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  47. Wellburn AR (1994) J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  48. Giannopolitis CN, Ries SK (1977) Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chance B, Maehly AC (1955) Methods Enzymol 2:764–775

    Article  Google Scholar 

  50. Sun M, Zigman S (1978) Anal Biochem 90:81–89

    Article  CAS  PubMed  Google Scholar 

  51. Almeselmani M, Deshmukh P, Sairam R, Kushwaha S, Singh T (2006) Plant Sci 171:382–388

    Article  CAS  PubMed  Google Scholar 

  52. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  53. Zheng YH, Jia A, Ning T, Xu J, Li Z, Jiang G (2008) J Plant Physiol 165:1455–1465

    Article  CAS  PubMed  Google Scholar 

  54. Álvarez EPP, Cerdán TG, Escudero EG, Vidaurre JMM (2017) J Sci Food Agric 97:2524–2532

    Article  Google Scholar 

  55. Mondal AB, Mamun AA (2011) Front Agric China 5(3):372–374

    Article  Google Scholar 

  56. Billah M, Sajib SA, Roy NC, Rashid MM, Reza MA, Hasan MM, Talukder MR (2020) Arch Biochem Biophys 681:108253–108310

    Article  CAS  PubMed  Google Scholar 

  57. Arima Y, Iwata H (2007) Biomaterials 28:3074–3082

    Article  CAS  PubMed  Google Scholar 

  58. Misra NN, Pankaj SK, Segat A, Ishikawa K (2016) Trends Food Sci Technol 55:39–47

    Article  CAS  Google Scholar 

  59. Zargarchi S, Saremnezhad S (2019) Food Sci Technol 102:291–294

    CAS  Google Scholar 

  60. Ishikawa T, Shigeoka S (2008) Biosci Biotechnol Biochem 72(5):1143–1154

    Article  CAS  PubMed  Google Scholar 

  61. Puač N, Škoro N, Spasić K, Živković S, Milutinović M, Malović G (2017) Petrović Z Lj. Plasma Process Polym 15:e1700082–e1700112

    Article  Google Scholar 

  62. Kučerová K, Henselová M, Slováková Ľ, Hensel K (2018) Plasma Process Polym 16:e1800131–e1800214

    Article  Google Scholar 

  63. Tanida M (1996) Breed Sci 46:23–27

    CAS  Google Scholar 

  64. Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Plant Cell Physiol 46(1):23–47

    Article  CAS  PubMed  Google Scholar 

  65. Poli Y, Nallamothu V, Balakrishnan D, Ramesh P, Desiraju S, Mangrauthia SK, Voleti SR, Neelamraju S (2018) Front Plant Sci 9:1543–1614

    Article  PubMed  PubMed Central  Google Scholar 

  66. Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Genet Mol Biol 35(4):1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K et al (2016) Environ Sci Pollut Res 23:19002–21929

    Article  CAS  Google Scholar 

  68. Ozaki K, Uchida A, Takabe T, Shinagawa F, Tanaka Y, Takabe T, Hayashi Hattori T, Rai AK, Takabe T (2009) J Plant Physiol 166:569–578

    Article  CAS  PubMed  Google Scholar 

  69. Yang Y, Rao Y, Xu J, Shao G, Leng Y, Huang L, Wang L, Dai L, Zhang G, Hu J, Zhu L, Li C, Gao Z, Guo L, Qian Q, Zeng D (2014) S African J Bot 93:137–141

    Article  CAS  Google Scholar 

  70. Soriano D, Huante P, Buen AG, Segovia AO (2013) Plant Ecol 214:1361–1375

    Article  Google Scholar 

  71. Soriano D, López S, Sánchez EZ, Segovia AO, Buen AG (2015) S African J Bot 97:149–153

    Article  CAS  Google Scholar 

  72. Couée I, Sulmon C, Gouesbet G, Amrani AE (2006) J Exp Bot 57:449–459

    Article  PubMed  Google Scholar 

  73. Jiang YH, Cheng JH, Sun DW (2020) Trends Food Sci Technol 98:129–139

    Article  CAS  Google Scholar 

  74. Tang T, Xie H, Wang Y, Lu B, Liang J (2009) J Exp Bot 60(9):2641–2652

    Article  CAS  PubMed  Google Scholar 

  75. Kumari M, Asthir B (2016) Rice Sci 23(5):255–265

    Article  Google Scholar 

Download references

Acknowledgements

M. R. Talukder would like to acknowledge Ministry of Education (Grant No. LS2017544), Government of the People’s Republic of Bangladesh, and the University of Rajshahi (Grant No. 62/5/52/RU/Engg-05/2020-2021), for their partial financial supports to carry out this work. The author also would like to thank Mizanur Rahman, Lab Technician, Plasma Science and Technology Lab, Department of Electrical and Electronic Engineering, University of Rajshahi for providing time in the Lab and research field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Talukder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, M., Rashid, M.M., Reza, M.A. et al. Combined Effects of Air Plasma Seed Treatment and Foliar Application of Plasma Activated Water on Enhanced Paddy Plant Growth and Yield. Plasma Chem Plasma Process 41, 1081–1099 (2021). https://doi.org/10.1007/s11090-021-10179-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10179-2

Keywords

Navigation