Skip to main content
Log in

Stimulation of the Germination and Early Growth of Tomato Seeds by Non-thermal Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The influence of non-thermal plasma on tomato seeds has been investigated using a fluidized bed dielectric barrier discharge generated in air. It was found that plasma-treated seeds germinate faster than untreated ones. Plasma slightly enhanced germination rate and considerably influenced growth parameters. Seedling length and weight are significantly higher than those of untreated seeds. The influence of plasma exposure is more visible on the plant roots, which are substantially longer and more branched. An increase in weight of 20–40% was observed for the plants grown from treated seeds as compared to the control ones. The best results are obtained for relatively short plasma exposure, while too long treatment appears to be detrimental to the seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. de Araújo S, Paparella S, Dondi D, Bentivoglio A, Carbonera D, Balestrazzi A (2016) Physical methods for seed invigoration: advantages and challenges in seed technology. Front Plant Sci 7(May):1–12

    Google Scholar 

  2. Aladjadjiyan A (ed) (2012) Physical factors for plant growth stimulation improve food quality. In: Food production—approaches, challenges and tasks. InTech, pp 145–168

  3. Dubinov AE, Lazarenko EM, Selemir VD (2000) Effect of glow discharge air plasma on grain crops seed. IEEE Trans Plasma Sci 28(1):180–183

    Article  Google Scholar 

  4. Volin JC, Denes FS, Young RA, Park SMT (2000) Modification of seed germination performance through cold plasma chemistry technology. Crop Sci 40(6):1706

    Article  CAS  Google Scholar 

  5. Puač N, Petrović ZL, Živković S, Giba Z, Grubišić D, Đorđević AR (2005) Low-temperature plasma treatment of dry empress-tree seeds. In: d’Agostino R, Favia P, Oehr C, Wertheimer MR (eds) Plasma processes and polymers. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 193–203

    Chapter  Google Scholar 

  6. Živković S, Puač N, Giba Z, Grubišić D, Petrović ZL (2004) The stimulatory effect of non-equilibrium (low temperature) air plasma pretreatment on light-induced germination of Paulownia tomentosa seeds. Seed Sci Technol 32(3):693–701

    Article  Google Scholar 

  7. Šerá B, Straňák V, Šerý M, Tichý M, Špatenka P (2008) Germination of chenopodium album in response to microwave plasma treatment. Plasma Sci Technol 10(4):506–511

    Article  Google Scholar 

  8. Šerá B, Šerý M, Štrañák V, Špatenka P, Tichý M (2009) Does cold plasma affect breaking dormancy and seed germination? A study on seeds of lamb’s quarters (Chenopodium album agg.). Plasma Sci Technol 11(6):750–754

    Article  Google Scholar 

  9. Sera B, Spatenka P, Sery M, Vrchotova N, Hruskova I (2010) Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci 38(10):2963–2968

    Article  Google Scholar 

  10. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2(1):741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dhayal M, Lee SY, Park SU (2006) Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum 80(5):499–506

    Article  CAS  Google Scholar 

  12. Filatova I et al (2011) The effect of plasma treatment of seeds of some grain and legumes on their sowing quality and productivity. Rom Rep Phys 56:139–143

    Google Scholar 

  13. Jiang J et al (2014) Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). PLoS ONE 9(5):1–6

    Google Scholar 

  14. Kitazaki S, Koga K, Shiratani M, Hayashi N (2012) Growth enhancement of radish sprouts induced by low pressure O2 radio frequency discharge plasma irradiation. Jpn J Appl Phys 51(1 PART 2):1–4

    Google Scholar 

  15. Ling L et al (2015) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4(1):5859

    Article  CAS  Google Scholar 

  16. Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7(4):1822–1832

    Article  CAS  Google Scholar 

  17. Kitazaki S, Sarinont T, Koga K, Hayashi N, Shiratani M (2014) Plasma induced long-term growth enhancement of Raphanus sativus L. using combinatorial atmospheric air dielectric barrier discharge plasmas. Curr Appl Phys 14(SUPPL. 2):S149–S153

    Article  Google Scholar 

  18. Sera B, Sery M, Gavril B, Gajdova I (2017) Seed germination and early growth responses to seed pre-treatment by non-thermal plasma in hemp cultivars (Cannabis sativa L.). Plasma Chem Plasma Process 37(1):207–221

    Article  CAS  Google Scholar 

  19. Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process 35(4):659–676

    Article  CAS  Google Scholar 

  20. Zahoranová A et al (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36(2):397–414

    Article  CAS  Google Scholar 

  21. Zhou R et al (2016) Effects of atmospheric-pressure N2, He, Air, and O2 microplasmas on mung bean seed germination and seedling growth. Sci. Rep. 6(1):32603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Puac N, Gherardi M, Shiratani M (2018) Plasma agriculture: a rapidly emerging field. Plasma Process Polym 15(2):1700174

    Article  CAS  Google Scholar 

  23. Ito M, Oh J-S, Ohta T, Shiratani M, Hori M (2018) Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies. Plasma Process Polym 15(2):1700173

    Article  CAS  Google Scholar 

  24. Randeniya LK, De Groot GJJB (2015) Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review. Plasma Process Polym 12(7):608–623

    Article  CAS  Google Scholar 

  25. Dobrin D, Magureanu M, Mandache NB, Ionita M-D (2015) The effect of non-thermal plasma treatment on wheat germination and early growth. Innov Food Sci Emerg Technol 29:255–260

    Article  CAS  Google Scholar 

  26. Henselová M, Slováková Ľ, Martinka M, Zahoranová A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia (Bratisl) 67(3):490–497

    Article  CAS  Google Scholar 

  27. Braşoveanu M, Nemţanu MR, Surdu-Bob C, Karaca G, Erper I (2015) Effect of glow discharge plasma on germination and fungal load of some cereal seeds. Rom Rep Phys 67(2):617–624

    Google Scholar 

  28. Filatova I, Azharonok V, Shik A, Antoniuk A, Terletskaya N (2012) Fungicidal effects of plasma and radio-wave pre-treatments on seeds of grain crops and legumes. In: Machala Z, Hensel K, Akishev Y (eds) Plasma for bio-decontamination, medicine and food security. NATO science for peace and security series A: chemistry and biology. Springer, Dordrecht, pp 469–479

    Chapter  Google Scholar 

  29. Filatova II, Azharonok VV, Goncharik SV, Lushkevich VA, Zhukovsky AG, Gadzhieva GI (2014) Effect of RF plasma treatment on the germination and phytosanitary state of seeds. J Appl Spectrosc 81(2):250–256

    Article  CAS  Google Scholar 

  30. Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour Technol 99(11):5104–5109

    Article  CAS  PubMed  Google Scholar 

  31. Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D (2015) Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep 5(1):13033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Falkenstein Z, Coogan JJ (1999) Microdischarge behaviour in the silent discharge of nitrogen–oxygen and water–air mixtures. J Phys D Appl Phys 30(5):817–825

    Article  Google Scholar 

  33. Jiang J et al (2014) Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol 16(1):54–58

    Article  CAS  Google Scholar 

  34. Šerá B, Gajdová I, Šerý M, Špatenka P (2013) New physicochemical treatment method of poppy seeds for agriculture and food industries. Plasma Sci Technol 15(9):935

    Article  CAS  Google Scholar 

  35. Hayashi N, Ono R, Shiratani M, Yonesu A (2015) Antioxidative activity and growth regulation of Brassicaceae induced by oxygen radical irradiation. Jpn J Appl Phys 54:06GD01

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was funded by Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI), by contract no. 3PED/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Măgureanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Măgureanu, M., Sîrbu, R., Dobrin, D. et al. Stimulation of the Germination and Early Growth of Tomato Seeds by Non-thermal Plasma. Plasma Chem Plasma Process 38, 989–1001 (2018). https://doi.org/10.1007/s11090-018-9916-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9916-0

Keywords

Navigation