Skip to main content
Log in

Seed Germination and Early Growth Responses to Seed Pre-treatment by Non-thermal Plasma in Hemp Cultivars (Cannabis sativa L.)

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The two key questions addressed in this paper were whether different cultivars of hemp (Cannabis sativa L.) have the same reactions to non-thermal plasma seed pre-treatments and whether different plasma sources have different effects on the seeds. Seed germination and early growth of hemp in design of hierarchical analysis of variance was conducted. Differences in response among seeds of three hemp cultivars (‘Finola’, ‘Bialobrzeskie’, ‘Carmagnola’) to the non-thermal plasma pre-treatment generated by two apparatuses (gliding arc and downstream microwave devices) in four time expositions (0, 180, 300, 600 s) were found. The high importance was found in type of apparatus and time exposition. A positive/neutral effect was observed in all measured characteristics after gliding arc plasma pre-treatment. Gliding arc pre-treatment increased the length of seedlings, seedling accretion and weight of seedling in both cv. ‘Finola’ and cv. ‘Bialobrzeskie’ hemp. On the other hand, the downstream microwave apparatus had an inhibiting effect on all tested hemp cultivars. It was the first time when significant differences in response to non-thermal pre-treatment were found in taxonomically close plants. The results obtained in this study describes different effect of various plasma treatment on germination and early growth of hemp seeds. The direct pre-treatment of non-thermal plasma discharge in condition of atmospheric pressure was better. Results of our experiment show that the use of non-thermal plasma pre-treatment may increase survival of some hemp cultivars during seedlings establishment in a drier period and may be used in new agro-technical measures in unconventional agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schultes RE, Hofmann A (1980) The botany and chemistry of hallucinogens. Thomas, Springfield

    Google Scholar 

  2. Alden DM, Proops JLR, Gay PW (1998) Industrial hemp’s double dividend: a study for the USA. Ecol Econ 25:291–301

    Article  Google Scholar 

  3. Small E, Marcus D (2002) In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria

    Google Scholar 

  4. Sawler J, Stout JM, Gardner KM, Hudson D, Vidmar J, Butler L, Page JE, Myles S (2015) The genetic structure of marijuana and hemp. PLoS ONE. doi:10.1371/journal.pone.0133292

    Google Scholar 

  5. Meijer EPM (1995) Fibre hemp cultivars: a survey of origin, ancestry, availability and brief agronomic characteristics. J Int Hemp Assoc 2:66–73

    Google Scholar 

  6. Amaducci S, Scordia D, Liu FH, Zhang Q, Guo H, Testa G, Cosentino SL (2015) Key cultivation techniques for hemp in Europe and China. Ind Crops Prod 68:2–16. doi:10.1016/j.indcrop.2014.06.041

    Article  CAS  Google Scholar 

  7. Kolarikova M, Ivanova T, Hutla P, Havrland B (2015) Economic evaluation of hemp (Cannabis sativa) grown for energy purposes (briquettes) in the Czech Republic. Agron Res 13:328–336

    Google Scholar 

  8. Liu M, Fernando D, Daniel G, Madsen B, Meyer AS, Ale MT, Thygesen A (2015) Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Ind Crops Prod 69:29–39. doi:10.1016/j.indcrop.2015.02.010

    Article  CAS  Google Scholar 

  9. Kotyza P (2012) In: Think together 2012, doctor scientific conference 6.2.2012. Czech University of Life Sciences, Praha. http://tt.pef.czu.cz/Files/3_printVersion_196.pdf

  10. Fortenbery TR, Bennett M (2004) Opportunities for commercial hemp production. Rev Agric Econ 26:97–117. doi:10.1111/j.1467-9353.2003.00164.x

    Article  Google Scholar 

  11. Šerá B, Špatenka P, Šerý M, Vrchotová N, Hrušková I (2010) Influence of plasma treatment on corn germination and early growth. IEEE Trans Plasma Sci 38:2963–2968. doi:10.1109/TPS.2010.2060728

    Article  Google Scholar 

  12. Jiang JF, He X, Li L, Li JG, Shao HL, Xu QL, Ye RH, Dong YH (2014) Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol. doi:10.1088/1009-0630/16/1/12

    Google Scholar 

  13. Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E (2015) Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot. doi:10.1093/jxb/erv206

    Google Scholar 

  14. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2:741–748. doi:10.1038/srep00741

    Article  Google Scholar 

  15. Li L, Jiang JF, Li JG, Shen MC, He X, Shao HL, Dong YH (2014) Effects of cold plasma reatment on seed germination and seedling growth of soybean. Sci Rep. doi:10.1038/srep05859

    Google Scholar 

  16. Li L, Li JG, Shen MC, Yhang C, Dong YH (2015) Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep. doi:10.1038/srep13033

    Google Scholar 

  17. Henselova M, Slovakova L, Martinka M, Zahoranova A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 67:490–497. doi:10.2478/s11756-012-0046-5

    Article  CAS  Google Scholar 

  18. Mildaziene V, Pauzaite G, Malakauskiene A, Zukiene R, Nauciene Z, Filatova I, Azharonok V, Lyushkevich V (2016) Response of perennial woody plants to seed treatment by electromagnetic field and low-temperature plasma. Bioelectromagnetics. doi:10.1002/bem.22003

    Google Scholar 

  19. Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process 35:659–676. doi:10.1007/s11090-015-9627-8

    Article  Google Scholar 

  20. Filátová I, Azharonok V, Kadyrov M, Beljavsky V, Gvozdov A, Shik A, Antonuk A (2011) The effect of plasma treatment of seeds of some grain and legumes on their sowing quality and productivity. Rom J Phys 56:139–143

    Google Scholar 

  21. Mihai AL, Dobrin D, Magureanu M, Popa ME (2014) Possitive effect of non-thermal plasma treatment on radish seed. Rom Rep Phys 66:1110–1117

    Google Scholar 

  22. Šerá B, Straňák V, Šerý M, Tichý M, Špatenka P (2008) Germination of Chenopodium album in response to microwive plasma treatment. Plasma Sci Technol 10:506–511. doi:10.1088/1009-0630/10/4/22

    Article  Google Scholar 

  23. Šerá B, Šerý M, Straňák V, Špatenka P, Tichý M (2009) Does cold plasma change the seed dormancy? Study on seeds of Lambs Quarters (Chenopodium album agg.). Plasma Sci Technol 11:750–754

    Article  Google Scholar 

  24. Kitazaki S, Koga K, Shiratani M, Hayashi N (2012) Growth enhancement of radish sprouts induced by low pressure O-2 radio frequency discharge plasma irradiation. Jap J Appl Phys. doi:10.1143/JJAP.51.01AE01

    Google Scholar 

  25. Okumura T, Muramoto Y, Shimizu N (2012) Influence of DC electric field on growth of daikon radish (Raphanus sativus). IEEE Trans Dielectr Electr Insul 19:2237–3341

    Article  Google Scholar 

  26. OECD (2012) OECD schemes for the varietal certification or the control of seed moving in international trade. List of varieties eligible for seed certification. OECD, Paris

    Google Scholar 

  27. Jankauskiene Z, Gruzdeviene E (2009) In: Noviks G (ed) Proceedings of the 7th international scientific and practical conference. Environment, technology, resources, Rezekne

  28. Gavril B, Hnatiuc E, Sera B, Hruskova I, Padureanu S, Haisan C (2011) XIXth symposium on physics of switching arc. University of Technology, Brno

    Google Scholar 

  29. Šerá B, Gajdová I, Šerý M, Špatenka P (2013) New physicochemical treatment method of Poppy seeds for agriculture and food industries. Plasma Sci Technol 15:935–938. doi:10.1088/1009-0630/15/9/19

    Article  Google Scholar 

  30. Šerý M, Špatenka P, Pavlik J, Messelhauser J (2000) Chromatic monitoring of downstream microwave plasma source. Czech J Phys 50:481–486

    Article  Google Scholar 

  31. Hunnekens B, Peters F, Avramidis G, Krause A, Militz H, Viol W (2016) Plasma treatment of wood-polymer composites: a comparison of three different discharge types and their effect on surface properties. J Appl Polym Sci. doi:10.1002/app.43376

    Google Scholar 

  32. Simor M, Rahel J, Cernak M, Imahori Y, Stefecka M, Kando M (2003) Atmospheric-pressure plasma treatment of polyester nonwoven fabrics for electroless plating. Surf Coat Tech 172:1–6. doi:10.1016/S0257-8972(03)00313-X

    Article  CAS  Google Scholar 

  33. Homola T, Matousek J, Hergelova B, Kormunda M, Wu LDYL, Cernak M (2012) Activation of poly(methyl methacrylate) surfaces by atmospheric pressure plasma. Polym Degrad Stab 97:886–892. doi:10.1016/j.polymdegradstab.2012.03.029

    Article  CAS  Google Scholar 

  34. Śerá B, Gajdová I, Černák M, Gavril B, Hnatiuc E, Kováčik D, Kříha V, Sláma J, Šerý M, Špatenka P (2012) In: Proceedings of the international conference on optimization of electrical and electronic equipment. OPTIM, Brasov

  35. Šerá B (2013) In: Bláha L, Šerá B (eds) Importance of plant integrity in research. Plant breeding and production. Powerprint, Praha (in Czech)

    Google Scholar 

  36. Jiang JF, Lu YF, Li JG, Li L, He X, Shao HL, Dong YH (2014) Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (Bacterial Wilt). PLoS ONE. doi:10.1371/journal.pone.0097753

    Google Scholar 

  37. Zahoranova A, Henselova M, Hudecova D, Kalinakova B, Kovacik D, Medvecka V, Cernak M (2015) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397–414. doi:10.1007/s11090-015-9684-z

    Article  Google Scholar 

  38. Baier M, Görgen M, Ehlbeck J, Knorr D, Herppich WB, Schlüter O (2014) Non-thermal atmospheric pressure plasma: screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innov Food Sci Emerg Technol 22:147–157. doi:10.1016/j.ifset.2014.01.011

    Article  CAS  Google Scholar 

  39. Tappi S, Gozzi G, Vannini L, Berardinelli A, Romani S, Ragni L, Rocculi P (2016) Cold plasma treatment for fresh-cut melon stabilization. Innov Food Sci Emerg Technol 33:225–233. doi:10.1016/j.ifset.2015.12.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to prof. Petr Spatenka and prof. Eugen Hnatiuc for their lending the both plasma apparatus. The preparation of the manuscript was funded by the both Faculty of Natural Science Comenius University and Faculty of Education University of South Bohemia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sera, B., Sery, M., Gavril, B. et al. Seed Germination and Early Growth Responses to Seed Pre-treatment by Non-thermal Plasma in Hemp Cultivars (Cannabis sativa L.). Plasma Chem Plasma Process 37, 207–221 (2017). https://doi.org/10.1007/s11090-016-9763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9763-9

Keywords

Navigation