Skip to main content
Log in

Effect of Cold Atmospheric Pressure Plasma on Maize Seeds: Enhancement of Seedlings Growth and Surface Microorganisms Inactivation

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Cold atmospheric pressure ambient air plasma generated by Diffuse Coplanar Surface Barrier Discharge (DCSBD) was investigated for inhibition of native microbiota and potentially dangerous pathogens (Aspergillus flavus, Alternaria alternata and Fusarium culmorum) on the maize surface. Moreover, the improvement of germination and growth parameters of maize seeds was evaluated. Maize (Zea mays L.; cv. Ronaldinio), one of the most important cultivated crops worldwide, was selected as the research material. Electrical measurements confirmed the high volume power density (80 W cm−3) of DCSBD plasma. Non-equilibrium plasma state evaluated using optical emission spectroscopy showed values of vibrational and rotational temperature (2700 ± 300) K and (370 ± 75) K, respectively. Changes on the plasma treated seeds surface were studied by water contact angle measurement, scanning electron microscope analysis and Fourier transform infrared spectroscopy. A complete devitalisation of native microbiota on the surface of seeds was observed after a short treatment time of 60 s (bacteria) and 180 s (filamentous fungi). The plasma treatment efficiency of artificially contaminated maize seeds was estimated as a reduction of 3.79 log (CFU/g) in F. culmorum after a 60-s plasma treatment, 4.21 log (CFU/g) in A. flavus and 3.22 log (CFU/g) in A. alternata after a 300-s plasma treatment. Moreover, the obtained results show an increase in wettability, resulting in a better water uptake and in an enhancement of growth parameters. The investigated DCSBD plasma source provides significant technical advantages and application potential for seed surface finishing without the use of hazardous chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. United Nations, Food and Agriculture Organization, Statistics Division (FAOSTAT). http://www.fao.org/faostat/en/#data/QC. Accessed 29 Aug 2017

  2. Fridman G, Friedman G, Gutsol A et al (2008) Applied plasma medicine. Plasma Process Polym 5:503

    Article  CAS  Google Scholar 

  3. Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Processes Polym 2:391–400. https://doi.org/10.1002/ppap.200400078

    Article  CAS  Google Scholar 

  4. Fernández A, Thompson A (2012) The inactivation of Salmonella by cold atmospheric plasma treatment. Food Res Int 45:678–684. https://doi.org/10.1016/j.foodres.2011.04.009

    Article  Google Scholar 

  5. Rød SK, Hansen F, Leipold F, Knøchel S (2012) Cold atmospheric pressure plasma treatment of ready-to-eat meat: inactivation of Listeria innocua and changes in product quality. Food Microbiol 30:233–238. https://doi.org/10.1016/j.fm.2011.12.018

    Article  PubMed  Google Scholar 

  6. Shimizu S, Barczyk S, Rettberg P et al (2014) Cold atmospheric plasma—a new technology for spacecraft component decontamination. Planet Space Sci 90:60–71. https://doi.org/10.1016/j.pss.2013.10.008

    Article  CAS  Google Scholar 

  7. Tendero C, Tixier C, Tristant P et al (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B 61:2–30. https://doi.org/10.1016/j.sab.2005.10.003

    Article  CAS  Google Scholar 

  8. Živković S, Puač N, Giba Z et al (2004) The stimulatory effect of non-equilibrium (low temperature) air plasma pretreatment on light-induced germination of Paulownia tomentosa seeds. Seed Sci Technol 32:693–701

    Article  Google Scholar 

  9. Volin JC, Denes FS, Young RA, Park SMT (2000) Modification of seed germination performance through cold plasma chemistry technology. Crop Sci 40:1706–1718

    Article  CAS  Google Scholar 

  10. Dubinov AE, Lazarenko EM, Selemir VD (2000) Effect of glow discharge air plasma on grain crops seed. IEEE Trans Plasma Sci 28:180–183

    Article  Google Scholar 

  11. Henselová M, Slováková Ľ, Martinka M, Zahoranová A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 67:490–497. https://doi.org/10.2478/s11756-012-0046-5

    Article  CAS  Google Scholar 

  12. Randeniya LK, de Groot GJJB (2015) Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review. Plasma Processes Polym 22:608–623. https://doi.org/10.1002/ppap.201500042

    Article  CAS  Google Scholar 

  13. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2:741. https://doi.org/10.1038/srep00741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang J, He X, Li L et al (2014) Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol 16:54–58. https://doi.org/10.1088/1009-0630/16/1/12

    Article  CAS  Google Scholar 

  15. Dobrin D, Magureanu M, Mandache NB, Ionita M-D (2015) The effects of non-thermal plasma treatment on wheat germination. Innov Food Sci Emerg Technol 29:255–260. https://doi.org/10.1016/j.ifset.2015.02.006

    Article  CAS  Google Scholar 

  16. Filatova I, Azharonok V, Lushkevich V et al (2013) Plasma seeds treatment as a promising technique for seed germination improvement. In: 31st international conference on phenomena in ionized gases, Granada, Spain, pp 4–7

  17. Šerá B, Špatenka P, Šerý M et al (2010) Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci 38:2963–2968

    Article  Google Scholar 

  18. Meng Y, Qu G, Wang T (2017) Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chem Plasma Process 37:1105–1119. https://doi.org/10.1007/s11090-017-9799-5

    Article  CAS  Google Scholar 

  19. Roy NC, Hasan MM, Talukder M et al (2018) Prospective applications of low frequency glow discharge plasmas on enhanced germination, growth and yield of wheat. Plasma Chem Plasma Process 38:13–28. https://doi.org/10.1007/s11090-017-9855-1

    Article  CAS  Google Scholar 

  20. Ling L, Jiangang L, Minchong S et al (2015) Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep 5:13033. https://doi.org/10.1038/srep13033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bormashenko E, Shapira Y, Grynyov R et al (2015) Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot 66:4013–4021. https://doi.org/10.1093/jxb/erv206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Šerá B, Šerý M, Gavril B, Gajdova I (2017) Seed germination and early growth responses to seed pre-treatment by non-thermal plasma in hemp cultivars (Cannabis sativa L.). Plasma Chem Plasma Process 37:207–221. https://doi.org/10.1007/s11090-016-9763-9

    Article  CAS  Google Scholar 

  23. Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Biores Technol 99:5104–5109. https://doi.org/10.1016/j.biortech.2007.09.076

    Article  CAS  Google Scholar 

  24. Hertwig C, Leslie A, Meneses N et al (2017) Inactivation of Salmonella Enteritidis PT30 on the surface of unpeeled almonds by cold plasma. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2017.02.007

    Article  Google Scholar 

  25. Kim B, Yun H, Jung S et al (2011) Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiol 28:9–13. https://doi.org/10.1016/j.fm.2010.07.022

    Article  CAS  PubMed  Google Scholar 

  26. Hertwig C, Reineke K, Ehlbeck J et al (2015) Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control 55:221–229. https://doi.org/10.1016/j.foodcont.2015.03.003

    Article  CAS  Google Scholar 

  27. Mir SA, Shah MA, Mir MM (2016) Understanding the role of plasma technology in food industry. Food Bioprocess Technol. https://doi.org/10.1007/s11947-016-1699-9

    Article  Google Scholar 

  28. Misra NN, Patil S, Moiseev T et al (2014) In-package atmospheric pressure cold plasma treatment of strawberries. J Food Eng 125:131–138. https://doi.org/10.1016/j.jfoodeng.2013.10.023

    Article  CAS  Google Scholar 

  29. Ouf SA, Basher H, Mohamed AH (2015) Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J Sci Food Agric 95:3204–3210. https://doi.org/10.1002/jsfa.7060

    Article  CAS  PubMed  Google Scholar 

  30. Černák M, Kováčik D, Ráhel’ J et al (2011) Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys Controlled Fusion 53:124031. https://doi.org/10.1088/0741-3335/53/12/124031

    Article  CAS  Google Scholar 

  31. Černák M, Černáková L, Hudec I et al (2009) Diffuse coplanar surface barrier discharge and its applications for in-line processing of low-added-value materials. Eur Phys J Appl Phys 47:22806. https://doi.org/10.1051/epjap/2009131

    Article  CAS  Google Scholar 

  32. Homola T, Matoušek J, Medvecká V et al (2012) Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning. Appl Surf Sci 258:7135–7139. https://doi.org/10.1016/j.apsusc.2012.03.188

    Article  CAS  Google Scholar 

  33. Bónová L, Zahoranová A, Kováčik D et al (2015) Atmospheric pressure plasma treatment of flat aluminum surface. Appl Surf Sci 331:79–86. https://doi.org/10.1016/j.apsusc.2015.01.030

    Article  CAS  Google Scholar 

  34. Navrátil Z, Trunec D, Šmíd R, Lazar L (2006) A software for optical emission spectroscopy-problem formulation and application to plasma diagnostics. Czech J Phys. https://doi.org/10.1007/s10582-006-0308-y

    Article  Google Scholar 

  35. Laux CO (2002) Radiation and nonequilibrium collisional-radiative models, von Karman Institute for Fluid Dynamics, Lecture Series 2002-07. In: Fletcher D, Charbonnier J-M, Sarma GSR, Magin T (eds) Physico-chemical modeling of high enthalpy and plasma flows. Rhode-Saint-Genèse, Belgium

  36. Abdul-Baki AA, Anderson JD (1973) Vigor determination in soybean seed by multiple criteria 1. Crop Sci 13:630–633

    Article  Google Scholar 

  37. Betina V, Baráthová H, Fargašová A et al (1987) Microbial laboratory methods. Alfa SNTL Publishing House, Bratislava (in Slovak)

    Google Scholar 

  38. Fassatiová O (1979) Moulds and filamentous fungi in technical microbiology. SNTL Publishing House, Praha (in Czech)

    Google Scholar 

  39. Tučeková Z, Kovaľová Z, Zahoranová A et al (2016) Inactivation of Escherichia coli on PTFE surfaces by diffuse coplanar surface barrier discharge. Eur Phys J Appl Phys 75:24711. https://doi.org/10.1051/epjap/2016150590

    Article  CAS  Google Scholar 

  40. Machala Z, Janda M, Hensel K et al (2007) Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J Mol Spectrosc 243:194–201. https://doi.org/10.1016/j.jms.2007.03.001

    Article  CAS  Google Scholar 

  41. Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11:115020. https://doi.org/10.1088/1367-2630/11/11/115020

    Article  CAS  Google Scholar 

  42. Uarrota VG, Amante ER, Demiate IM et al (2013) Physicochemical, thermal, and pasting properties of flours and starches of eight Brazilian maize landraces (Zea mays L.). Food Hydrocolloids 30:614–624. https://doi.org/10.1016/j.foodhyd.2012.08.005

    Article  CAS  Google Scholar 

  43. Kuhnen S, Ogliari JB, Dias PF et al (2010) Original article ATR-FTIR spectroscopy and chemometric analysis applied to discrimination of landrace maize flours produced in southern Brazil. Food Sci Technol 45:1673–1681. https://doi.org/10.1111/j.1365-2621.2010.02313.x

    Article  CAS  Google Scholar 

  44. Vasques CT, Domenech SC, Severgnini VLS et al (2007) Effect of thermal treatment on the stability and structure of maize starch cast films. Starch/Staerke 59:161–170. https://doi.org/10.1002/star.200600500

    Article  CAS  Google Scholar 

  45. Stolárik T, Henselová M, Martinka M et al (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process 35:659–676. https://doi.org/10.1007/s11090-015-9627-8

    Article  CAS  Google Scholar 

  46. Dhayal M, Lee S, Park S (2006) Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum 80:499–506. https://doi.org/10.1016/j.vacuum.2005.06.008

    Article  CAS  Google Scholar 

  47. Zahoranová A, Henselová M, Hudecová D et al (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397–414. https://doi.org/10.1007/s11090-015-9684-z

    Article  CAS  Google Scholar 

  48. Henselová M, Zahoranová A, Černák M (2011) Effect of low-temperature plasma on the germination and ontogenetic development of corn (Zea mays L.). In: Blaha J (ed) Proceedings from conference: effect of abiotics and biotics stressors on the plant properties 2011. Praha, pp 166–169

  49. Ling L, Jiafeng J, Jiangang L et al (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4:1–7. https://doi.org/10.1038/srep05859

    Article  CAS  Google Scholar 

  50. Tančinová D, Kačániová M, Javoreková S (2001) Natural occurence of fungi in feeding wheat after harvest and during storage in the agricultural farm facilities. Biologia 56:247–250

    Google Scholar 

  51. Niaz I, Dawar S (2009) Detection of seed borne mycoflora in maize (Zea Mays L.). Pak J Bot 41:443–451

    Google Scholar 

  52. Rai R, Dash ÆPK, Prasanna BM, Singh A (2007) Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. World J Microbiol Biotechnol 23:853–858. https://doi.org/10.1007/s11274-006-9309-z

    Article  Google Scholar 

  53. Kordas L, Pusz W, Czapka T, Kacprzyk R (2015) The effect of low-temperature plasma on fungus colonization of winter wheat grain and seed quality. Pol J Environ Stud 24:379–384

    Google Scholar 

  54. Kim JE, Lee D-U, Min SC (2014) Microbial decontamination of red pepper powder by cold plasma. Food Microbiol 38:128–136. https://doi.org/10.1016/j.fm.2013.08.019

    Article  CAS  PubMed  Google Scholar 

  55. Souškova H, Scholtz V, Julák J et al (2011) The survival of micromycetes and yeasts under the low-temperature plasma generated in electrical discharge. Folia Microbiol 56:77–79. https://doi.org/10.1007/s12223-011-0005-5

    Article  CAS  Google Scholar 

  56. Mošovská S, Medvecká V, Halászová N et al (2018) Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Food Res Int 106:862–869. https://doi.org/10.1016/j.foodres.2018.01.066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-16-0216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Zahoranová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahoranová, A., Hoppanová, L., Šimončicová, J. et al. Effect of Cold Atmospheric Pressure Plasma on Maize Seeds: Enhancement of Seedlings Growth and Surface Microorganisms Inactivation. Plasma Chem Plasma Process 38, 969–988 (2018). https://doi.org/10.1007/s11090-018-9913-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9913-3

Keywords

Navigation