Skip to main content
Log in

Synthesis of Functional Oxide Nanoparticles Through RF Thermal Plasma Processing

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A method of synthesizing functional nanostructured powders through reactive thermal plasma processing has been developed. Nano-sized oxide powders, including titanium dioxide and some functional oxides, were synthesized by the oxidation of liquid precursors. Oxides with the prescribed cation ratio of the liquid precursor can be synthesized with this technique, and it is possible to precisely adjust the chemical composition, which is linked to the appropriate functions of ceramic materials. Quench gases, either injected from the shoulder of the reactor or injected counter to the plasma plume from the bottom of the reactor, were used to vary the quench rate; therefore, the particle size of the resultant powders. The experimental results are well supported by numerical analysis on the effects of quench gases on the flow pattern and temperature field of thermal plasma as well as on the trajectory and temperature history of particles. Plasma-synthesized TiO2 nanoparticles showed phase preferences different from those synthesized by conventional wet-chemical processes. Nano-sized particles of high crystallinity and nonequilibrium chemical composition were formed in one step via reactive thermal plasma processing. The plasma-synthesized nanoparticles were spherical and hardly agglomerated, and high dispersion properties were observed, i.e., the plasma-synthesized TiO2 nanoparticles were individually dispersed in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schmid G (ed) (2004) Nanoparticles—from theory to application. WILEY-VCH Verlag GmbH & Co. KGaA, Berlin

    Google Scholar 

  2. Boulos MI, Fauchais P, Phender E (1994) Thermal plasmas: fundamental and applications, vol 1. Plenums Press, New York

    Book  Google Scholar 

  3. Young RM, Phender E (1985) Generation and behavior of fine particles in thermal plasmas—a review. Plasma Chem Plasma Process 5(1):1–37. doi:10.1007/BF00567907

    Article  CAS  Google Scholar 

  4. Li YL, Ishigaki T (2001) Spheroidization of titanium carbide powders by induction thermal plasma processing. J Am Ceram Soc 84(9):1929–1936. doi:10.1111/j.1151-2916.2001.tb00939.x

    Article  CAS  Google Scholar 

  5. Boulos MI (1992) RF induction plasma spraying: state-of-the-art review. J Therm Spray Technol 1(1):33–40. doi:10.1007/BF02657015

    Article  Google Scholar 

  6. Kong P, Huang TT, Pfender E (1986) Synthesis of ultrafine silicon-carbide powders in thermal arc plasmas. IEEE Trans Plasma Sci 14(4):357–369. doi:10.1109/TPS.1986.4316563

    Article  Google Scholar 

  7. Kong PC, Pfender E (1987) Formation of ultrafine beta-silicon carbide powders in an argon thermal plasma-jet. Langmuir 3(2):259–265. doi:10.1021/la00074a020

    Article  CAS  Google Scholar 

  8. Chang Y, Kong PC, Pfender E (1989) Characterization of silicon-nitride particles synthesized in an atmospheric-pressure convection-stabilized arc. Plasma Chem Plasma Process 9(1):73–93. doi:10.1007/BF01015827

    Article  CAS  Google Scholar 

  9. Chang Y, Young RM, Pfender E (1989) Silicon-nitride synthesis in an atmospheric-pressure convection-stabilized arc. Plasma Chem Plasma Process 9(2):277–289. doi:10.1007/BF01054286

    Article  CAS  Google Scholar 

  10. Tamou Y, Yoshida T, Akashi K (1987) The synthesis of ultrafine silicon carbide in a hybrid plasma. J Jpn Inst Met 51(8):737–742

    CAS  Google Scholar 

  11. Lee HJ, Eguchi K, Yoshida T (1990) Preparation of ultrafine silicon-nitride, and silicon-nitride and silicon-carbide mixed powders in a hybrid plasma. J Am Ceram Soc 73(11):3356–3362. doi:10.1111/j.1151-2916.1990.tb06461.x

    Article  CAS  Google Scholar 

  12. Kijima K, Noguchi H, Konishi M (1989) Sintering of ultrafine SiC powders prepared by plasma CVD. J Mater Sci 24(8):2929–2933. doi:10.1007/BF02385649

    Article  CAS  Google Scholar 

  13. Guo JY, Gitzhofer F, Boulos MI (1995) Induction plasma synthesis of ultrafine SiC powders from silicon and CH4. J Mater Sci 30(22):5589–5599. doi:10.1007/BF00356691

    Article  CAS  Google Scholar 

  14. Guo JY, Gitzhofer F, Boulos MI (1997) Effects of process parameters on ultrafine SiC synthesis using induction plasma. CH4. J Mater Sci 17(2):219–249. doi:10.1007/BF02766817

    CAS  Google Scholar 

  15. Soucy G, Jurewicz JW, Boulos MI (1995) Parametric study of the plasma synthesis of ultrafine silicon-nitride powders. J Mater Sci 30(8):2008–2018. doi:10.1007/BF00353026

    Article  CAS  Google Scholar 

  16. Rao NP, Tymiak N, Blum J, Neuman A, Lee HJ, Girshick SL, McMurry PH, Heberlein J (1998) Hypersonic plasma particle deposition of nanostructured silicon and silicon carbide. J Aerosol Sci 29(5/6):707–720. doi:10.1016/S0021-8502(97)10015-5

    Article  CAS  Google Scholar 

  17. Pratsinis SE, Vemury S (1996) Particle formation in gases: a review. Powder Technol 88(3):267–273. doi:10.1016/S0032-5910(96)03130-0

    Article  CAS  Google Scholar 

  18. Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24(3):197–219. doi:10.1016/S0360-1285(97)00028-2

    Article  CAS  Google Scholar 

  19. Vemury S, Pratsinis SE (1995) Dopants in flame synthesis of titania. J Am Ceram Soc 78(11):2984–2992. doi:10.1111/j.1151-2916.1995.tb09074.x

    Article  CAS  Google Scholar 

  20. Hinklin T, Toury B, Gervais C, Babonneau F, Gislason JJ, Morton RW, Laine RM (2004) Liquid-feed flame spray pyrolysis of metalloorganic and inorganic alumina sources in the production of nanoalumina powders. Chem Mater 16(1):21–30. doi:10.1021/cm021782t

    Article  CAS  Google Scholar 

  21. Laine RM, Marchal JC, Sun HP, Pan XQ (2006) Nano-α-Al2O3 by liquid-feed flame spray pyrolysis. Nat Mater 5(9):710–712. doi:10.1038/nmat1711

    Article  CAS  Google Scholar 

  22. Li YL, Ishigaki T (2001) Synthesis of crystalline micron spheres of titanium dioxide by thermal plasma oxidation of titanium carbide. Chem Mater 13(5):1577–1584. doi:10.1021/cm000893u

    Article  CAS  Google Scholar 

  23. Ishigaki T, Li YL, Kataoka E (2003) Phase formation and microstructure of titanium oxides and composites produced by thermal plasma oxidation of titanium carbide. J Am Ceram Soc 86(9):1456–1463. doi:10.1111/j.1151-2916.2003.tb03496.x

    Article  CAS  Google Scholar 

  24. Oh SM, Li JG, Ishigaki T (2005) Nanocrystalline TiO2 powders synthesized by in-flight oxidation of TiN in thermal plasma: mechanisms of phase selection and particle morphology evolution. J Mater Res 20(2):529–537. doi:10.1557/JMR.2005.0070

    Article  CAS  Google Scholar 

  25. Akhtar MK, Pratsinis SE, Mastrangelo SVR (1994) Vapor phase synthesis of Al-doped titania powders. J Mater Res 9(5):1241–1249. doi:10.1557/JMR.1994.1241

    Article  CAS  Google Scholar 

  26. Lee JE, Oh SM, Park DW (2004) Synthesis of nano-sized Al doped TiO2 powders using thermal plasma. Thin Solid Films 457(1):230–234. doi:10.1016/j.tsf.2003.12.027

    Article  CAS  Google Scholar 

  27. Kagawa M, Ohta H, Komatsu H, Syono Y (1985) Precipitation of γ-Fe2O3 from ultrahigh temperature plasma. Jpn J Appl Phys 24(4):477–481. doi:10.1143/JJAP.24.477

    Article  CAS  Google Scholar 

  28. Suzuki M, Kagawa M, Syono Y, Hirai T (1992) Synthesis of ultrafine single-component oxide particles by the spray-ICP technique. J Mater Sci 27(3):679–684. doi:10.1007/BF02403879

    Article  CAS  Google Scholar 

  29. Kato Y, Kagawa M, Syono Y (1998) Component distribution in plasma-deposited ultrafine powders of binary (Cr2O3, Fe2O3, SnO2)–Al2O3 systems. Mater Lett 35(3–4):266–269. doi:10.1016/S0167-577X(97)00261-9

    Article  CAS  Google Scholar 

  30. Mizoguchi Y, Onodera H, Yamauchi H, Kagawa M, Syono Y, Hirai T (1991) Mössbauer spectra and magnetic susceptibilities of ultrafine hexagonal RFeO3(R: Eu, Yb) particles formed by the spray inductive coupled plasma technique. Mater Sci Eng, A 217:164–166. doi:10.1016/S0921-5093(96)10339-7

    Google Scholar 

  31. Mizoguchi Y, Kagawa M, Syono Y, Hirai T (2001) Film synthesis of Y3Al5O12 and Y3Fe5O12 by the spray-inductively coupled plasma technique. J Am Ceram Soc 84(3):651–653. doi:10.1111/j.1151-2916.2001.tb00717.x

    Article  CAS  Google Scholar 

  32. Mizoguchi Y, Kagawa M, Syono Y, Hirai T (1996) Ba(Fe12−xCoxTix)12O19 (x = 0, 0.6, 0.9) films synthesized by the spray-ICP technique. Mater Trans, JIM 37(5):1177–1181

    Article  CAS  Google Scholar 

  33. Uzawa M, Kagawa M, Syono Y (1993) Synthesis of barium hexaaluminate by the spray-ICP technique. Mater Lett 17(3–4):187–189. doi:10.1016/0167-577X(93)90082-9

    Article  CAS  Google Scholar 

  34. Suzuki M, Kagawa M, Syono Y, Hirai T, Watanabe K (1992) Superconducting thin films of Bi–Pb–Sr–Ca–Cu–O synthesized by the spray-inductively coupled plasma technique. J Mater Sci 26(21):5929–5932. doi:10.1007/BF01130136

    Article  Google Scholar 

  35. Shimada S, Yoshimatsu M, Nagai H, Suzuki M, Komaki H (2000) Preparation and properties of TiN and AlN films from alkoxide solution by thermal plasma CVD method. Thin Solid Films 370(1–2):137–145. doi:10.1016/S0040-6090(00)00935-4

    Article  CAS  Google Scholar 

  36. Shimada S, Yoshimatsu M (2000) Preparation of (Ti1−xAlx)N films from mixed alkoxide solutions by plasma CVD. Thin Solid Films 370(1–2):146–150. doi:10.1016/S0040-6090(00)00934-2

    Article  CAS  Google Scholar 

  37. Takahashi M, Shimada S (2004) Preparation of composite and compositinally graded TiC–TiN films by liquid injection plasma-enhanced CVD. Solid State Ionics 172(1–4):249–252. doi:10.1016/j.ssi.2004.03.015

    Article  CAS  Google Scholar 

  38. Shimada S, Tsukurimichi K (2000) Preparation of SiNx and composite SiNx–TiN films from alkoxide solutions by liquid injection plasma CVD. Thin Solid Films 419(1–2):54–59. doi:10.1016/S0040-6090(02)00768-X

    Google Scholar 

  39. Shimada S, Fuji Y, Tsujino J, Yamazaki I (2010) Thermal plasma CVD and wear resistance of double layered Ti–Si–B–C/Ti–B–C coatings on WC–Co cutting tools with various roughness. Surf Coat Technol 204(11):1715–1721. doi:10.1016/j.surfcoat.2009.10.056

    Article  CAS  Google Scholar 

  40. Ishigaki T, Oh SM, Li JG, Park DW (2005) Controlling the synthesis of TaC nanopowders by injecting liquid precursor into RF induction plasma. Sci Technol Adv Mater 6(2):111–118. doi:10.1016/j.stam.2004.11.001

    Article  CAS  Google Scholar 

  41. Li JG, Ikeda M, Tang C, Moriyoshi Y, Hamanaka H, Ishigaki T (2007) Chlorinated nanocrystalline TiO2 powders via one-step Ar/O2 radio frequency thermal plasma oxidizing mists of TiCl3 solution: phase structure and photocatalytic performance. J Phys Chem C 111(49):18018–18024. doi:10.1021/jp077320q

    Article  CAS  Google Scholar 

  42. Ikeda M, Li JG, Kobayashi N, Moriyoshi Y, Hamanaka H, Ishigaki T (2008) Phase formation and luminescence properties in Eu3+-doped TiO2 nanoparticles prepared by thermal plasma pyrolysis of aqueous solutions. Thin Solid Films 516(19):6640–6644. doi:10.1016/j.tsf.2007.11.037

    Article  CAS  Google Scholar 

  43. Li JG, Kamiyama H, Wang XH, Moriyoshi Y, Ishigaki T (2006) TiO2 nanopowders via radio-frequency thermal plasma oxidation of organic liquid precursors: synthesis and characterization. J Eur Ceram Soc 26(4–5):423–428. doi:10.1016/j.jeurceramsoc.2005.07.034

    Article  CAS  Google Scholar 

  44. Li JG, Ishigaki T, Ikeda M, Ye R, Moriyoshi Y (2007) Control of particle size and phase formation of TiO2 nanoparticles synthesized in RF induction plasma. J Phys D Appl Phys 40(8):2348–2353. doi:10.1088/0022-3727/40/8/S14

    Article  CAS  Google Scholar 

  45. Bouyer E, Gitzhofer F, Boulos MI (1997) The suspension plasma spraying of bioceramics by induction plasma. JOM 49(2):58–62. doi:10.1007/BF02915483

    Article  CAS  Google Scholar 

  46. Soucy G, Rahmane M, Fan X, Ishigaki T (2001) Heat and mass transfer during in-flight nitridation of molybdenum disilicide in an induction plasma reactor. Mater Sci Eng, A 300(1–2):226–234. doi:10.1016/S0921-5093(00)01767-6

    Article  Google Scholar 

  47. Li YL, Ishigaki T (2002) Thermodynamic analysis of nucleation of anatase and rutile from TiO2 melt. J Cryst Growth 242(3–4):511–516. doi:10.1016/S0022-0248(02)01438-0

    Article  CAS  Google Scholar 

  48. Wang XH, Li JG, Kamiyama H, Katada M, OhashiN Moriyoshi Y, Ishigaki T (2005) Pyrogenic iron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties. J Am Chem Soc 127(31):10982–10990. doi:10.1021/ja051240n

    Article  CAS  Google Scholar 

  49. Li YL, Ishigaki T (2004) Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation. J Phys Chem B 108(40):15536–15542. doi:10.1021/jp040316j

    Article  CAS  Google Scholar 

  50. Li JG, Wang XH, Watanabe K, Ishigaki T (2006) Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists. J Phys Chem B 110(3):1121–1127. doi:10.1021/jp053329l

    Article  CAS  Google Scholar 

  51. Li JG, Wang XH, Tang C, Ishigaki T, Tanaka S (2008) Energy transfer enables 1.53 μm photoluminescence from erbium-doped TiO2 semiconductor nanocrystals synthesized by Ar/O2 radio-frequency thermal plasma. J Am Ceram Soc 91(6):2032–2035. doi:10.1111/j.1551-2916.2008.02318.x

    Article  CAS  Google Scholar 

  52. Li JG, Büchel R, Isobe M, Mori T, Ishigaki T (2009) Cobalt-doped TiO2 nanocrystallites: radio-frequency thermal plasma processing, phase structure, and magnetic properties. J Phys Chem C 113(19):8009–8015. doi:10.1021/jp8080047

    Article  CAS  Google Scholar 

  53. Yamaura K, Wang XH, Li JG, Ishigaki T, Takayama-Muromachi E (2006) Magnetic properties of the highly iron-doped rutile TiO2 nano crystals. Mater Res Bull 41(11):2080–2087. doi:10.1016/j.materresbull.2006.04.003

    Article  CAS  Google Scholar 

  54. Tachikawa T, Ishigaki T, Li JG, Fujitsuka M, Majima T (2008) Defect-mediated photoluminescence dynamics of Eu3 + -doped TiO2 nanocrystals revealed at the single-particle or single-aggregate level. Angew Chem Int Ed 47(29):5348–5352. doi:10.1002/anie.200800528

    Article  CAS  Google Scholar 

  55. Zhang CN, Ikeda M, Uchikoshi T, Li JG, Watanabe T, Ishigaki T (2011) High-concentration niobium(V) doping into TiO2 nanoparticles synthesized by thermal plasma processing. J Mater Res 26(5):658–671. doi:10.1557/jmr.2011.16

    Article  CAS  Google Scholar 

  56. Zhang C, Uchikoshi T, Li JG, Watanabe T, Ishigaki T (2011) Influence of niobium doping on phase composition and defect-mediated photoluminescence properties of Eu3+-doped TiO2 nanopowders synthesized in Ar/O2 thermal plasma. J Alloys Compd 509(36):8944–8951. doi:10.1016/j.jallcom.2011.06.089

    Article  CAS  Google Scholar 

  57. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38. doi:10.1038/238037a0

    Article  CAS  Google Scholar 

  58. Wang XH, Li JG, Kamiyama H, Moriyoshi Y, Ishigaki T (2006) Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. J Phys Chem B 110(13):6804–6809. doi:10.1021/jp060082z

    Article  CAS  Google Scholar 

  59. Zhang CN, Ikeda M, Uchikoshi T, Li JG, Watanabe T, Ishigaki T (2011) Photocatalytic performance of iron (III) and niobium (V)-codoped TiO2 nanopowders synthesized by a radio frequency thermal plasma process. Thin Solid Films 519(20):6940–6943. doi:10.1016/j.tsf.2010.11.050

    Article  CAS  Google Scholar 

  60. Zhang CN, Uchikoshi T, Li JG, Watanabe T, Ishigaki T (2014) Photocatalytic activities of europium (III) and niobium (V) co-doped TiO2 nanopowders synthesized in Ar/O2 radio-frequency thermal plasmas. J Alloys Compd 606:37–43. doi:10.1016/j.jallcom.2014.03.191

    Article  CAS  Google Scholar 

  61. Skandan G, Foster CM, Frase H, Ali MN, Parker JC, Hahn H (1992) Phase characterization and stabilization due to grain size effects of nanostructured Y2O3. Nanostruct Mater 1(4):313–322. doi:10.1016/0965-9773(92)90038-Y

    Article  CAS  Google Scholar 

  62. Li JG, Ishigaki T (2012) One-step Ar/O2 thermal plasma processing of Y2O3:Eu3+ red phosphors: phase structure, photoluminescent properties, and the effects of Sc3+ codoping. J Solid State Chem 196:58–62. doi:10.1016/j.jssc.2012.08.004

    Article  CAS  Google Scholar 

  63. Kobayashi N, Ishigaki T, Watanabe T, Li JG (2011) Synthesis of pure, crystalline (Ba, Sr)TiO3 nanosized powders in radio frequency induction thermal plasma. Int J Appl Ceram Technol 8(5):1125–1135. doi:10.1111/j.1744-7402.2010.02546.x

    Article  CAS  Google Scholar 

  64. Sato K, Li JG, Kamiya H, Ishigaki T (2008) Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension. J Am Ceram Soc 91(8):2481–2487. doi:10.1111/j.1551-2916.2008.02493.x

    Article  CAS  Google Scholar 

  65. Sato K, Ikeda M, Li JG, Kamiya H, Ishigaki T (2011) Highly dispersed behavior of thermal plasma-synthesized TiO2 nanoparticles in water. J Ceram Soc Jpn 119(4):303–306. doi:10.2109/jcersj2.119.303

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamasa Ishigaki.

Additional information

In honor of Emeritus Professor Emil Pfender.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishigaki, T. Synthesis of Functional Oxide Nanoparticles Through RF Thermal Plasma Processing. Plasma Chem Plasma Process 37, 783–804 (2017). https://doi.org/10.1007/s11090-017-9788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9788-8

Keywords

Navigation