Skip to main content
Log in

Oxidation of Binary FeCr Alloys (Fe–2.25Cr, Fe–10Cr, Fe–18Cr and Fe–25Cr) in O2 and in O2 + H2O Environment at 600 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behaviour of the binary alloys Fe–2.25Cr, Fe–10Cr, Fe–18Cr and Fe–25Cr (wt%) in dry and wet O2 at 600 °C is investigated by isothermal exposures of carefully polished samples for up to 168 h. The oxidized samples are investigated gravimetrically and the oxides formed are studied by X-ray diffraction. X-ray photoelectron spectroscopy is used for depth profiling of the thin oxides. The scale surface is imaged by SEM. Cross-sections through the scale are analyzed by SEM/EDX for imaging and for measuring the chemical composition. The oxidation behavior of the four FeCr alloys is intermediate between those of iron and chromium. Fe–2.25Cr oxidizes in a way similar to iron in both environments, forming a poorly protective scale consisting of FeCr spinel at the bottom, magnetite in the middle and a hematite cap layer. In dry O2, Fe–10Cr, Fe–18Cr and Fe–25Cr form a thin and protective (Fe,Cr)2O3 oxide similar to the chromia film formed on pure chromium. In wet O2, Fe–10Cr, Fe–18Cr and Fe–25Cr initially form the same kind of protective oxide film as in dry conditions. After an incubation time that depends on alloy chromium content, all three alloys go into breakaway oxidation and form thick, poorly protective scales similar to those formed on Fe–2.25Cr. Breakaway oxidation in wet O2 is triggered by the evaporation of CrO2(OH)2 from the protective (Fe,Cr)2O3 oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science Publishers Ltd, London and New York, 1988).

    Google Scholar 

  2. N. Birks and H. Meier, Introduction to the High Temperature Oxidation of Metals, 2nd ed, (Cambridge University Press, London, 2006).

    Google Scholar 

  3. B. Pujilaksono, T. Jonsson, M. Halvarsson, J.-E. Svensson and L.-G. Johansson, Corrosion Science 52, 1560 (2010).

    Article  CAS  Google Scholar 

  4. T. Jonsson, B. Pujilaksono, A. Fuchs, J.-E. Svensson, L.-G. Johansson, and H. Halvarsson, Materials Science Forum 595–598, 1005 (2008).

    Google Scholar 

  5. T. Jonsson, B. Pujilaksono, S. Hallstrom, J. Agren, J. E. Svensson, L. G. Johansson and M. Halvarsson, Corrosion Science 51, 1914 (2009).

    Article  CAS  Google Scholar 

  6. E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky and M. D. Allendorf, Journal of Physical Chemistry 111, 1971 (2007).

    CAS  Google Scholar 

  7. B. Pujilaksono, T. Jonsson, M. Halvarsson, I. Panas, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 70, 163 (2008).

    Article  CAS  Google Scholar 

  8. C. S. Tedmon, Journal of the Electrochemical Society 113, 766 (1966).

    Article  CAS  Google Scholar 

  9. H. Asteman, J.-E. Svensson, M. Norell and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).

    Article  CAS  Google Scholar 

  10. H. Asteman, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 57, 193 (2002).

    Article  CAS  Google Scholar 

  11. E. Essumana, G. H. Meierb, J. Zurekc, M. Hänseld, L. Singheisere and W. J. Quadakkers, Materials Science Forum 595–598, 699 (2008).

    Article  Google Scholar 

  12. B. Tveten, G. Hultquist and T. Norby, Oxidation of Metals 51, 221(1999).

    Article  CAS  Google Scholar 

  13. J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).

    Article  CAS  Google Scholar 

  14. F. Liu, J. E. Tang, T. Jonsson, S. Canovic, K. Segerdahl, J.-E. Svensson and M. Halvarsson, Oxidation of Metals 66, 295 (2006).

    Article  CAS  Google Scholar 

  15. Jonsson, T., H. Mezerji, B. Pujilaksono, F. Liu, L.-G. Johansson, J.-E. Svensson, and M. Halvarsson, Oxidation of Metals (submitted).

  16. J. Topfer, S. Aggarwal and R. Dieckmann, Solid State Ionics 81, 251 (1995).

    Article  Google Scholar 

  17. J. O. Andersson, T. Helander, L. Höglund, P. F. Shi and B. Sundman, Calphad 26, 273 (2002).

    Article  CAS  Google Scholar 

  18. B. Sundman, Journal of Phase Equilibria 12, 127 (1991).

    Article  CAS  Google Scholar 

  19. T. Jonsson, A. Järdnäs, J.-E. Svensson, L.-G. Johansson and M. Halvarsson, Oxidation of Metals 67, (3–4), 193 (2007).

    Article  CAS  Google Scholar 

  20. M. Ueda, K. Kawamura and T. Maruyama, High-Temperature Oxidation and Corrosion, 37 (2005).

  21. A. S. Khanna, Introduction to High Temperature and Corrosion, 1st ed, (A. International, Materials Park, 2002).

    Google Scholar 

  22. P. K. Footner, D. R. Holmes and D. Mortimer, Nature 216, 54 (1967).

    Article  CAS  Google Scholar 

  23. M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson and L.-G. Johansson, Corrosion Science 48, 2014 (2006).

    Article  CAS  Google Scholar 

  24. H. Asteman, J.-E. Svensson and L.-G. Johansson, Corrosion Science 44, 2635 (2002).

    Article  CAS  Google Scholar 

  25. F. Liu, J. E. Tang, H. Asteman, J.-E. Svensson, L.-G. Johansson and M. Halvarsson, Oxidation of Metals 71, 77 (2009).

    Article  CAS  Google Scholar 

  26. J. E. Tang, F. Liu, H. Asteman, J. E. Svensson, L. G. Johansson and M. Halvarsson, Materials at High Temperature, 24, 27 (2007).

    Google Scholar 

  27. T. Jonsson, S. Canovic, F. Liu, H. Asteman, J. E. Svensson, L. G. Johansson and M. Halvarsson, Materials at High Temperature 22, 231 (2005).

    Article  CAS  Google Scholar 

  28. T. Jonsson, F. Liu, S. Canivic, H. Asteman, J. E. Svensson, L. G. Johansson and M. Halvarsson, Journal of the Electrochemical Society 154, C603 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out within the Swedish High Temperature Corrosion centre (HTC) and the Swedish Foundation for Strategic Research (SSF) Materials Research Programme “Mechanisms of creep and oxidation of high performance alloys” (CROX). A grant from the Knut and Alice Wallenberg Foundation for acquiring the FEG SEM instrument is gratefully acknowledged. The authors are grateful to Samuel Hallström at the Royal Institute of Technology for carrying out the Thermo-Calc calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Jonsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pujilaksono, B., Jonsson, T., Heidari, H. et al. Oxidation of Binary FeCr Alloys (Fe–2.25Cr, Fe–10Cr, Fe–18Cr and Fe–25Cr) in O2 and in O2 + H2O Environment at 600 °C. Oxid Met 75, 183–207 (2011). https://doi.org/10.1007/s11085-010-9229-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9229-z

Keywords

Navigation