Skip to main content
Log in

Investigation of the Evolution of the Oxide Scale Formed on 310 Stainless Steel Oxidized at 600 °C in Oxygen with 40% Water Vapour Using FIB and TEM

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Detailed microstructure investigations were performed on oxide scales formed on 310 stainless steel exposed isothermally at 600 °C to O2 with 40% water vapour for 1–336 h. FIB microscopy was used to study the evolution of the surface morphology and to prepare cross-section TEM thin foils of the oxide scales. The foils were investigated by analytical transmission electron microscopy. The results showed that a thin protective base oxide scale had formed after 1 h. Due to Cr loss from the oxide scale through water vapour induced Cr evaporation, local breakaway oxidation occurs, resulting in the formation of oxide nodules. The development of these nodules depends on whether a new Cr-rich healing layer is formed or not. A model for the evolution of the oxide scale is proposed based on the results regarding the composition and distribution of various phases in the oxide scale and subjacent steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. W. H. Hatfield, in Iron and Steel Institute—Meeting, Vol. 9 (Iron and Steel Institute, 1927), p. 26.

  2. C. T. Fujii and R. A. Meussner, Journal of Electrochemical Society 111, 1215 (1964).

    Article  CAS  Google Scholar 

  3. I. Kvernes, M. Oliveira, and P. Kofstad, Corrosion Science 17, 237 (1977).

    Article  CAS  Google Scholar 

  4. P. Kofstad, in High Temperature Corrosion, Elsevier Applied Science, Chapter 11 (1988), pp. 342–387.

  5. D. Caplan and M. Cohen, Journal of Electrochemical Society 108, 438 (1961).

    Article  CAS  Google Scholar 

  6. D. Caplan and M. Cohen, Corrosion 15, 141t (1959).

    CAS  Google Scholar 

  7. A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).

    Article  CAS  Google Scholar 

  8. M. Thiele, H. Teichmann, W. Schwarz, and W. J. Quadakkers, VGB Kraftwerkstechnik 2, 129 (1997).

    Google Scholar 

  9. A. Holt and P. Kofstad, Solid State Ionics 69, 137 (1994).

    Article  CAS  Google Scholar 

  10. S. Jiannian, Z. Lingjiang, and L. Tiefan, Oxidation of Metals 48, 347 (1997).

    Article  Google Scholar 

  11. W. J. Quadakkers and P. J. Ennis, VGB Kraftwerkstechnik 2, 123 (1997).

    Google Scholar 

  12. H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Norell, Oxidation of Metals 52, 95 (1999).

    Article  CAS  Google Scholar 

  13. H. Asteman, J.-E. Svensson, and L.-G. Johansson, Oxidation of Metals 57, 193 (2002).

    Article  CAS  Google Scholar 

  14. K. Segerdal, J.-E. Svensson, and L.-G. Johansson, Materials and Corrosion 53, 247 (2002).

    Article  Google Scholar 

  15. K. Segerdal, J.-E. Svensson, and L.-G. Johansson, Materials and Corrosion 53, 479 (2002).

    Article  Google Scholar 

  16. H. Asteman, K. Segerdal, J.-E. Svensson, and L.-G. Johansson, Materials Science Forum 369–372, 277 (2001).

    Google Scholar 

  17. H. Asteman, J.-E. Svensson, and L.-G. Johansson, Corrosion Science 44, 2635 (2002).

    Article  CAS  Google Scholar 

  18. A. Yamauchi, K. Kurokawa, and H. Takahashi, Oxidation of Metals 59, 517 (2003).

    Article  CAS  Google Scholar 

  19. E. Opila, Materials Science Forum 461–464, 765 (2004).

    Article  Google Scholar 

  20. G. C. Wood and D. P. Whittle, Corrosion Science 7, 763 (1967).

    Article  CAS  Google Scholar 

  21. J. E. Tang, F. Liu, H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Halvarsson, Materials at High Temperatures 24, 27 (2007).

    Article  CAS  Google Scholar 

  22. I. Saeki, T. Saito, R. Furuichi, H. Konno, T. Nakamura, K. Mabuchi, and M. Itoh, Corrosion Science 40, 1295 (1998).

    Article  CAS  Google Scholar 

  23. X. Peng, J. Yan, Y. Zhou, and F. Wang, Acta Materialia 53, 5079 (2005).

    Article  CAS  Google Scholar 

  24. S. N. Basu and G. J. Yurek, Oxidation of Metals 36, 281 (1991).

    Article  CAS  Google Scholar 

  25. G. J. Yurek, D. Eisen, and A. Garratt-Reed, Metallurgical and Materials Transactions A 13, 473 (1982).

    Article  Google Scholar 

  26. D. R. Baer and M. D. Merz, Metallurgical Transactions A 11A, 1973 (1980).

    Article  ADS  CAS  Google Scholar 

  27. M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson, and L.-G. Johansson, Corrosion Science 48, 2014 (2006).

    Article  CAS  Google Scholar 

  28. H. E. Evans, A. T. Donaldson, and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).

    Article  CAS  Google Scholar 

  29. H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster, Oxidation of Metals 14, 235 (1980).

    Article  CAS  Google Scholar 

  30. F. Liu, J. E. Tang, T. Jonsson, S. Cnovic, K. Segerdal, J.-E. Svensson, and M. Halvarsson, Oxidation of Metals 66, 295 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out within the Swedish High Temperature Corrosion centre (HTC) with financial support partly provided by the Swedish National Research Council (VR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Tang, J.E., Asteman, H. et al. Investigation of the Evolution of the Oxide Scale Formed on 310 Stainless Steel Oxidized at 600 °C in Oxygen with 40% Water Vapour Using FIB and TEM. Oxid Met 71, 77–105 (2009). https://doi.org/10.1007/s11085-008-9130-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9130-1

Keywords

Navigation