Skip to main content

Thermodynamic States and Transitions Diagrams in Surface Engineering for the Material Degradation Prevention

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications (NANO 2020)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 263))

Included in the following conference series:

Abstract

A range of additives of different nature and their binary mixtures have been investigated in regard to their influence on the metal degradation processes. It was shown the applicability of the thermodynamic state and transitions diagrams for analysis of electrochemical processes and interactions during the development of metal protection methods based on a formation of non-metallic phase layers. The theoretical model that represents the coaction mechanism of the additives of different nature on the electrochemical behavior of metal has been further improved and refined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rozenfeld IL (1977) Corrosion inhibitors. Khimiya, Moscow

    Google Scholar 

  2. Antropov LI, Makushin EM, Panasenko VF (1981) Inhibitors of the corrosion of metals, Tekhnika, Kiev

    Google Scholar 

  3. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston, Texas, p 551

    Google Scholar 

  4. Pourbaix M, Pourbaix A (eds) (1982) Diagrams of chemical and electrochemical equilibria: their setting-up and applications. In: Proceedings of a NATO advanced research workshop, CEBELCOR’s reports techniques 142, RT 263, CEBELOR, Brussels

    Google Scholar 

  5. Beverskog B, Puigdomenech I (1996) Revised Pourbaix diagrams for iron at 25–300 °C. Corros Sci 38(12):2121–2135. https://doi.org/10.1016/S0010-938X(96)00067-4

    Article  Google Scholar 

  6. Garcés P, Saura P, Zornoza E, Andrade C (2011) Influence of pH on the nitrite corrosion inhibition of reinforcing steel in simulated concrete pore solution. Corros Sci 53(12):3991–4000. https://doi.org/10.1016/j.corsci.2011.08.002

    Article  Google Scholar 

  7. Hussain RR (2014) Passive layer development and corrosion of steel in concrete at the nano-scale. J Civ Environ Eng 4:e116. https://doi.org/10.4172/2165-784X.1000e116

  8. Min J, Park JH, Sohn H-K, Park JM (2012) Synergistic effect of potassium metal siliconate on silicate conversion coating for corrosion protection of galvanized steel. J Ind Eng Chem 18(2):655–660. https://doi.org/10.1016/j.jiec.2011.11.057

    Article  Google Scholar 

  9. Truc AT, Pébère N, Xuan HT, Hervaud Y, Boutevin B (2002) Study of the synergistic effect observed for the corrosion protection of a carbon steel by an association of phosphates. Corros Sci 44:2055–2071. https://doi.org/10.1016/S0010-938X(02)00013-6

    Article  Google Scholar 

  10. Omotosho Olugbenga A, Okeniyi Joshua O, Ajayi Oluseyi O, Loto Cleophas A (2012) Effect of synergies of K2Cr2O7, K2CrO4, NaNO2 and aniline inhibitors on the corrosion potential response of seel reinforced concrete in saline medium. Int J Environ Sci 2(12):2346–2359.https://doi.org/10.6088/ijes.00202030116

  11. Mohana KN, Badiea AM (2008) Effect of sodium nitrite-borax blend on the corrosion rate of low carbon steel in industrial water medium. Corros Sci 50(10):2939–2947. https://doi.org/10.1016/j.corsci.2008.07.002

    Article  Google Scholar 

  12. Eyu GD, Will G, Dekkers W, MacLeod J (2016) The synergistic effect of iodide and sodium nitrite on the corrosion inhibition of mild steel in bicarbonate-chloride solution. Materials 9(11):868. https://doi.org/10.3390/ma9110868

    Article  ADS  Google Scholar 

  13. Ramanauskas R, Girčienė O, Gudavičiūtė L, Selskis A (2015) The interaction of phosphate coatings on a carbon steel surface with a sodium nitrite and silicate solution. Appl Surf Sci 327:131–139. https://doi.org/10.1016/j.apsusc.2014.11.120

    Article  ADS  Google Scholar 

  14. Girčienė O, Ramanauskas R, Gudavičiūtė L, Martušienė A (2011) Inhibition effect of sodium nitrite and silicate on carbon steel corrosion in chloride-contaminated alkaline solutions. Corrosion 67(12):125001-1–125001-12. https://doi.org/10.5006/1.3665355

  15. Chong AL, Mardel JI, MacFarlane DR, Forsyth M, Somers AE (2016) Synergistic corrosion inhibition of mild steel in aqueous chloride solutions by an imidazolinium carboxylate salt. ACS Sustain Chem Eng 4(3):1746–1755. https://doi.org/10.1021/acssuschemeng.5b01725

    Article  Google Scholar 

  16. Ioffa ZA (1972) Synergetic and antagonistic effects at adsorption and impact of surfactants on the electrochemical reactions and corrosion of iron. Prot Metals 8(2):139–145

    Google Scholar 

  17. Ledovskykh VM, Vyshnevska YuP, Brazhnyk IV, Levchenko SV (2017) Metal surface modification for obtaining nano- and sub-nanostructured protective layers. Nanoscale Res Lett 12:186–191. https://doi.org/10.1186/s11671-017-1964-5

    Article  ADS  Google Scholar 

  18. Ledovs’kykh VM, Vyshnevs’ka YuP, Brazhnyk IV, Levchenko SV (2017) Development and optimization of synergistic compositions for the corrosion protection of steel in neutral and acid media. Mater Sci 52(5):634–642. https://doi.org/10.1007/s11003-017-0002-1

  19. Ledovskykh VM, Vyshnevska YuP, Brazhnyk IV, Levchenko SV (2019) Thermodynamic approach to purposeful design of synergistic inhibitive compositions for corrosion protection in aqueous saline medium. Mater Sci 54(4):485–495. https://doi.org/10.1007/s11003-019-00208-z

    Article  Google Scholar 

  20. Ledovskykh VM, Vyshnevska YuP, Brazhnyk IV, Levchenko SV (2019) Metal surface engineering based on formation of nanoscaled phase protective layers. Nanocompos Nanostruct Their Appl Springer Proc Phys 221:69–84. https://doi.org/10.1007/s11003-014-9680-0

    Article  Google Scholar 

  21. Ledovskykh VM, Vyshnevska YuP, Brazhnyk IV, Levchenko SV (2021) Mechanism of the oxidative and salt passivators coaction within binary inhibitive mixtures. Mater Sci 56(5) (In press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Vyshnevska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ledovskykh, V.M., Vyshnevska, Y.P., Brazhnyk, I.V., Levchenko, S.V. (2021). Thermodynamic States and Transitions Diagrams in Surface Engineering for the Material Degradation Prevention. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . NANO 2020. Springer Proceedings in Physics, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-74741-1_30

Download citation

Publish with us

Policies and ethics