Skip to main content
Log in

Strong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Building upon the subgradient extragradient method proposed by Censor et al., we prove the strong convergence of the iterative sequence generated by a modification of this method by means of the Halpern method. We also consider the problem of finding a common element of the solution set of a variational inequality and the fixed-point set of a quasi-nonexpansive mapping with a demiclosedness property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kassay, G., Kolumbán, J., Páles, Z.: On Nash stationary points. Publ. Math. (Debr.) 54, 267–279 (1999)

    MATH  Google Scholar 

  2. Kassay, G., Kolumbán, J., Páles, Z.: Factorization of Minty and Stampacchia variational inequality systems. Interior point methods. Eur. J. Oper. Res. 143, 377–389 (2002)

    Article  MATH  Google Scholar 

  3. Kassay, G., Kolumbán, J.: System of multi-valued variational inequalities. Publ. Math. (Debr.) 56, 185–195 (2000)

    MATH  Google Scholar 

  4. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  5. Lions, J.-L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)

    MATH  Google Scholar 

  7. Browder, F.E.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Am. Math. Soc. 74, 660–665 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yamada, I., Ogura, N.: Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619–655 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Censor, Y., Gibali, A., Reich, S.: A von Neumann alternating method for finding common solutions to variational inequalities. Nonlinear Anal. 75, 4596–4603 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Censor, Y., Gibali, A., Reich, S., Sabach, S.: Common solutions to variational inequalities. Set-Valued Var. Anal. 20, 229–247 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Korpelevič, G.M.: An extragradient method for finding saddle points and for other problems. Èkon. Mat. Metody 12, 747–756 (1976) (In Russian)

    Google Scholar 

  14. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  MATH  Google Scholar 

  18. Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bauschke, H.H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202, 150–159 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cegielski, A.: Iterative methods for fixed point problems. In: Hilbert Spaces. Lecture Notes in Mathematics, vol. 2057. Springer, Heidelberg (2012)

    Google Scholar 

  21. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  22. Maingé, P.E.: The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces. Comput. Math. Appl. 59, 74–79 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu, H.-K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. (2) 66, 240–256 (2002)

    Article  MATH  Google Scholar 

  25. Reich, S.: Constructive techniques for accretive and monotone operators. In: Applied Nonlinear Analysis, Proc. Third Internat. Conf., Univ. Texas, Arlington, TX, 1978, pp. 335–345. Academic Press, New York (1979)

    Chapter  Google Scholar 

  26. Minty, G.J.: On a “monotonicity” method for the solution of non-linear equations in Banach spaces. Proc. Natl. Acad. Sci. USA 50, 1038–1041 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  27. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  28. Browder, F.E.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Am. Math. Soc. 74, 660–665 (1968)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Franco Giannessi and the two referees for their insightful suggestions. The second author is supported by the TRF Research Career Development Grant (RSA5680002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satit Saejung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraikaew, R., Saejung, S. Strong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces. J Optim Theory Appl 163, 399–412 (2014). https://doi.org/10.1007/s10957-013-0494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0494-2

Keywords

Navigation