Skip to main content

Advertisement

Log in

A double projection method for solving variational inequalities without monotonicity

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We present a double projection algorithm for solving variational inequalities without monotonicity. If the solution of dual variational inequality does exist, then the sequence produced by our method is globally convergent to a solution. Under the same assumption, the sequence produced by known methods has only a subsequence converging to a solution. Numerical experiments are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein, A.A.: Convex programming in Hilbert space. Bull. Am. math. soc. 70, 709–710 (1964)

    Article  MATH  Google Scholar 

  2. Levitin, E.S., Polyak, B.T.: Constrained minimization problems. USSR Comput. math. math. phys. 6, 1–50 (1966)

    Article  Google Scholar 

  3. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–C898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Matecon 17(10), 747–756 (1976)

    Google Scholar 

  5. Khobotov, E.N.: Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. math. math. phys. 27, 120–127 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Xiu, N.H., Zhang, J.Z.: Some recent advances in projection-type methods for variational inequalities. J. Comput. Appl. Math. 152, 559–585 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wang, Y.J., Xiu, N.H., Wang, C.Y.: Unified framework of extragradient-type methods for pseudomonotone variational inequalities. J. Optim. Theory Appl. 111(3), 641–656 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Konnov, I.V.: Combined relaxation methods for finding equilibrium points and solving related problems. Russ. Math. (Iz VUZ). 37(2), 44–51 (1993)

    MATH  MathSciNet  Google Scholar 

  9. Konnov, I.V.: Combined relaxation methods for generalized monotone variational inequalities. Generalized Convexity and Related Topics. Lecture Notes in Economics and Mathematical Systems, pp. 3–31. Springer Berlin Heidelberg, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Konnov, I.V.: Combined relaxation methods for variational inequalities. Springer-Verlag, Berlin (2001)

    Book  MATH  Google Scholar 

  11. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37(3), 765–776 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. He, Y.R.: A new double projection algorithm for variational inequalities. J. Comput. Appl. Math. 185(1), 166–173 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ye, M.L.: The framework of double projection algorithm for variational inequalities. Acta math. appl. sin. 35, 529–535 (2012)

    MATH  MathSciNet  Google Scholar 

  14. Han, D.R., Lo, H.K.: Two new self-adaptive projection methods for variational inequality problems. Comp. Math. Appl. 43, 1529–1537 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Han, D.R., Lo, H.K., Wang, Z.W.: A simple self-adaptive alternating direction method for linear variational inequality problems. Comput. Math. Appl. 53(10), 1595–1604 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yan, X.H., Han, D.R., Sun, W.Y.: A self-adaptive projection method with improved step-size for solving variational inequalities. Comput. Math. Appl. 55, 819–832 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karamardian, S.: Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18, 445–454 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Langenberg, N.: An interior proximal method for a class of quasimonotone variational inequalities. J. Optim. Theory Appl. 155, 902–922 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Brito, A.S., da Cruz Neto, J.X., Lopes, J.O., Oliveira, P.R.: Interior proximal algorithm for quasiconvex programming problems and variational inequalities with linear constraints. J. Optim. Theory Appl. 154, 217–234 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer-Verlag, New York (2003)

    Google Scholar 

  21. Hadjisavvas, N., Schaible, S.: Quasimonotone variational inequalities in Banach spaces. J. Optim. Theory Appl. 90(1), 95–111 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Marcotte, P., Zhu, D.L.: A cutting plane method for solving quasimonotone variational inequalities. Comput. Optim. Appl. 20, 317–324 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  24. Sun, D.F.: A new step-size skill for solving a class of nonlinear equations. J. Comput. Math. 13, 357–368 (1995)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Natural Science Foundation of China under grant 11271274, a grant from Ministry of Education of China, and grant from Jiangsu Provincial Key Lab for Numerical Simulation of Large Scale and Complex System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minglu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, M., He, Y. A double projection method for solving variational inequalities without monotonicity. Comput Optim Appl 60, 141–150 (2015). https://doi.org/10.1007/s10589-014-9659-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9659-7

Keywords

Mathematics Subject Classification

Navigation