Skip to main content
Log in

A variety of new rogue wave patterns for three coupled nonlinear Maccari’s models in complex form

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Maccari’s system serves as a valuable tool in various mathematical disciplines, contributing to the understanding of complex dynamics, control theory, synchronization phenomena, and mathematical modeling. This study utilizes the truncated Painlevé approach (TPA) to investigate the three coupled nonlinear Maccari’s equations in complex form. By using this technique, the localized solutions have been found and expressed in terms of arbitrary functions. These solutions included multirogue waves, rogue wave doublets, and lump solutions. The dynamical behavior of these solutions is visualized by selecting arbitrary values for the control parameters. Moreover, the studied model undergoes analysis from multiple perspectives, including quasi-periodic, chaotic motion, and multistability. An external periodic perturbation is introduced to the system, allowing the utilization of various chaos detecting tools. Through these tools, we identify quasi-periodic and chaotic behavior, demonstrating the system’s deviation from regular patterns. It is worth noting that all calculations were verified using Maple for accuracy and reliability. The analysis in the given research will enhance our comprehension of the behavior of waves in high-dimensional Maccari systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Gurefe, Y., Sonmezoglu, A., Misirli, E.: Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics. Pramana 77, 1023–1029 (2011)

    Article  Google Scholar 

  2. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108(1), 521–531 (2022)

    Article  Google Scholar 

  3. Zhang, J., Jiang, F., Zhao, X.: An improved (G’/G)-expansion method for solving nonlinear evolution equations. Int. J. Comput. Math. 87(8), 1716–1725 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bekir, A.: Applications of the extended tanh method for coupled nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1748–1757 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zayed, E.M.E., Ibrahim, S.H.: Exact solutions of nonlinear evolution equations in mathematical physics using the modified simple equation method. Chin. Phys. Lett. 29(6), 060201 (2012)

    Article  Google Scholar 

  6. Raza, N., Salman, F., Butt, A.R., Gandarias, M.L.: Lie symmetry analysis, soliton solutions and qualitative analysis concerning to the generalized q-deformed Sinh-Gordon equation. Commun. Nonlinear Sci. Numer. Simul. 116, 106824 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  7. Raza, N., Kaplan, M., Javid, A., Inc, M.: Complexiton and resonant multi-solitons of a (4+ 1)-dimensional BoitiLeonMannaPempinelli equation. Opt. Quant. Electron. 54, 1–16 (2022)

    Article  Google Scholar 

  8. Han, T., Li, Z., Li, C.: Bifurcation analysis, stationary optical solitons and exact solutions for generalized nonlinear Schrödinger equation with nonlinear chromatic dispersion and quintuple power-law of refractive index in optical fibers. Physica A 615, 128599 (2023)

    Article  MATH  Google Scholar 

  9. Han, T., Li, Z., Zhang, K.: Exact solutions of the stochastic fractional long-short wave interaction system with multiplicative noise in generalized elastic medium. Results Phys. 44, 106174 (2023)

    Article  Google Scholar 

  10. Han, T., Li, Z., Shi, K., Wu, G.C.: Bifurcation and traveling wave solutions of stochastic Manakov model with multiplicative white noise in birefringent fibers. Chaos Solitons Fractals 163, 112548 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Raza, N., Seadawy, A.R., Kaplan, M., Butt, A.R.: Symbolic computation and sensitivity analysis of nonlinear Kudryashovïs dynamical equation with applications. Phys. Scr. 96(10), 105216 (2021)

    Article  Google Scholar 

  12. Xu, G.: The soliton solutions, dromions of the Kadomtsev–Petviashvili and Jimbo–Miwa equations in (3+1)-dimensions. Chaos Solitons Fractals 30(1), 71–76 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maccari, A.: The Maccari system as model system for rogue waves. Phys. Lett. A 384(28), 126740 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaur, L., Wazwaz, A.M.: Bright–dark lump wave solutions for a new form of the (3+1)-dimensional BKP-Boussinesq equation. Rom. Rep. Phys 71(1), 1–11 (2019)

    Google Scholar 

  15. Seadawy, A.R., Rizvi, S.T., Ahmed, S.: Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh–Nagumo equation: applications in nuclear reactor theory. Chaos Solitons Fractals 161, 112326 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, X., Li, Y., Huang, F., Chen, Y.: Rogue wave solutions of AB system. Commun. Nonlinear Sci. Numer. Simul. 20(2), 434–442 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao, L.C., Liu, J.: Rogue-wave solutions of a three-component coupled nonlinear Schrödinger equation. Phys. Rev. E 87(1), 013201 (2013)

    Article  Google Scholar 

  18. Huang, L., Yue, Y., Chen, Y.: Localized waves and interaction solutions to a (3+1)-dimensional generalized KP equation. Comput. Math. Appl. 76(4), 831–844 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Wang, G.H., Wang, L.H., Rao, J.G., He, J.S.: New patterns of the two-dimensional rogue waves:(2+1)-dimensional Maccari system. Commun. Theor. Phys. 67(6), 601 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, Z., Manafian, J., Raheel, M., Zafar, A., Alsaikhan, F., Abotaleb, M.: Extracting the exact solitons of time-fractional three coupled nonlinear Maccari’s system with complex form via four different methods. Results Phys. 36, 105400 (2022)

    Article  Google Scholar 

  21. Raza, N., Jhangeer, A., Rezazadeh, H., Bekir, A.: Explicit solutions of the (2+1)-dimensional Hirota–Maccari system arising in nonlinear optics. Int. J. Mod. Phys. B 33(30), 1950360 (2019)

  22. Shakeel, M., Mohyud-Din, S.T., Iqbal, M.A.: Closed form solutions for coupled nonlinear Maccari system. Comput. Math. Appl. 76(4), 799–809 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Li, Z., Xie, X., Jin, C.: Phase portraits and optical soliton solutions of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow. Results Phys. 41, 105932 (2022)

    Article  Google Scholar 

  24. Yel, G., Cattani, C., Baskonus, H.M., Gao, W.: On the complex simulations with dark-bright to the Hirota-Maccari system. J. Comput. Nonlinear Dyn. 16(6), 061005 (2021)

    Article  Google Scholar 

  25. Zhou, T.Y., Tian, B., Chen, Y.Q., Shen, Y.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn. 108(3), 2417–2428 (2022)

    Article  Google Scholar 

  26. Ma, Y.X., Tian, B., Qu, Q.X., Yang, D.Y., Chen, Y.Q.: Painlevé analysis, Bäcklund transformations and traveling-wave solutions for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in a fluid. Int. J. Mod. Phys. B 35(07), 2150108 (2021)

    Article  MATH  Google Scholar 

  27. Zhang, S.L., Wu, B., Lou, S.Y.: Painlevé analysis and special solutions of generalized Broer–Kaup equations. Phys. Lett. A 300(1), 40–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lou, S.Y., Lin, J., Tang, X.Y.: Painlevé integrability and multi-dromion solutions of the 2+1 dimensional AKNS system. Eur. Phys. J. B Condens. Matter Complex Syst. 22, 473–478 (2001)

    Article  Google Scholar 

  29. Jhangeer, A., Almusawa, H., Hussain, Z.: Bifurcation study and pattern formation analysis of a nonlinear dynamical system for chaotic behavior in traveling wave solution. Results Phys. 37, 105492 (2022)

    Article  Google Scholar 

  30. Rafiq, M.H., Raza, N., Jhangeer, A.: Nonlinear dynamics of the generalized unstable nonlinear Schródinger equation: a graphical perspective. Opt. Quant. Electron. 55(7), 628 (2023)

    Article  Google Scholar 

  31. Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185(1), 247–258 (2010)

    Article  Google Scholar 

  32. Ye, Y., Hou, C., Cheng, D., Chen, S.: Rogue wave solutions of the vector Lakshmanan–Porsezian–Daniel equation. Phys. Lett. A 384(11), 126226 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Islam, T., Akbar, A., Rezazadeh, H., Bekir, A.: New-fashioned solitons of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.03.003

    Article  Google Scholar 

  34. Neirameh, A.: New analytical solutions for the coupled nonlinear Maccari’s system. Alex. Eng. J. 55(3), 2839–2847 (2016)

    Article  Google Scholar 

  35. Akinyemi, L., Veeresha, P., Ajibola, S.O.: Numerical simulation for coupled nonlinear Schrödinger–Korteweg–de Vries and Maccari systems of equations. Mod. Phys. Lett. B 35(20), 2150339 (2021)

  36. Zahran, E.H., Shehata, M.S., Mirhosseini-Alizamini, S.M., Alam, M.N., Akinyemi, L.: Exact propagation of the isolated waves model described by the three coupled nonlinear Maccari’s system with complex structure. Int. J. Mod. Phys. B 35(18), 2150193 (2021)

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/347/44.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nauman Raza.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, N., Rani, B., Chahlaoui, Y. et al. A variety of new rogue wave patterns for three coupled nonlinear Maccari’s models in complex form. Nonlinear Dyn 111, 18419–18437 (2023). https://doi.org/10.1007/s11071-023-08839-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08839-3

Keywords

Navigation