Skip to main content
Log in

Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2\(+\)1)-dimensional generalized Burgers system with the variable coefficients in a fluid

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Burgers-type equations are used to describe certain phenomena in gas dynamics, traffic flow, plasma astrophysics and ocean dynamics. In this paper, a (2\(+\)1)-dimensional generalized Burgers system with the variable coefficients in a fluid is investigated. We obtain the Painlevé-integrable constraints of the system with respect to the variable coefficients. Based on the truncated Painlevé expansions, an auto-Bäcklund transformation is constructed, along with some soliton solutions. Via a truncated Painlevé expansions, certain multiple kink solutions are derived. Via a complex-conjugate transformation, some breather solutions, half-periodic kink solutions and hybrid solutions composed of the breathers and kink waves are seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ghommem, M., Najar, F., Arabi, M., Abdel-Rahman, E., Yavuz, M.: A unified model for electrostatic sensors in fluid media. Nonlinear Dyn. 101, 271–291 (2020)

    Google Scholar 

  2. Wazwaz, A.M.: Two new Painlevé integrable KdV-Calogero–Bogoyavlenskii–Schiff (KdV-CBS) equation and new negative-order KdV-CBS equation. Nonlinear Dyn. 104, 4311–4315 (2021)

    Google Scholar 

  3. Kumar, S., Jiwari, R., Mittal, R.C., Awrejcewicz, J.: Dark and bright soliton solutions and computational modeling of nonlinear regularized long wave model. Nonlinear Dyn. 104, 661–682 (2021)

    Google Scholar 

  4. Smaoui, N., Al, J.R.: Dynamics and control of the modified generalized Korteweg-de Vries-Burgers equation with periodic boundary conditions. Nonlinear Dyn. 103, 987–1009 (2021)

    Google Scholar 

  5. Dunlap, A., Graham, C., Ryzhik, L.: Stationary solutions to the Stochastic Burgers equation on the line. Commun. Math. Phys. 382, 875–949 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Wang, D., Gao, Y.T., Ding, C.C., Zhang, C.Y.: Solitons and periodic waves for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics. Commun. Theor. Phys. 72, 115004 (2020)

  7. Mohammed, W.W., Albosaily, S., Iqbal, N.: The effect of multiplicative noise on the exact solutions of the stochastic Burgers’ equation. Wave. Random Complex. (2022). https://doi.org/10.1080/17455030.2021.1905914

    Article  Google Scholar 

  8. Gao, X.Y., Guo, Y.J., Shan, W.R., Yin, H.M., Du, X.X., Yang, D.Y.: Electromagnetic waves in a ferromagnetic film. Commun. Nonlinear Sci. Numer. Simul. 105, 106066 (2022)

  9. Saha, A., Pradhan, B., Banerjee, S.: Bifurcation analysis of quantum ion-acoustic kink, anti-kink and periodic waves of the Burgers equation in a dense quantum plasma. Eur. Phys. J. Plus 135, 216 (2020)

    Google Scholar 

  10. Shi, Y.: Exact breather-type solutions and resonance-type solutions of the (2+1)-dimensional potential Burgers system. Rom. J. Phys. 62, 116 (2017)

    Google Scholar 

  11. Miao, Z., Hu, X., Chen, Y.: Interaction phenomenon to (1+1)-dimensional Sharma–Tasso–Olver–Burgers equation. Appl. Math. Lett. 112, 106722 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Yan, Z.W., Lou, S.Y.: Soliton molecules in Sharma–Tasso–Olver–Burgers equation. Appl. Math. Lett. 104, 106271 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Qu, G., Hu, X., Miao, Z., Shen, S., Wang, M.: Soliton molecules and abundant interaction solutions of a general high-order Burgers equation. Results Phys. 23, 104052 (2021)

    Google Scholar 

  14. Gai, L., Ma, W.X., Li, M.: Lump-type solution and breather lump-kink interaction phenomena to a (3+1)-dimensional GBK equation based on trilinear form. Nonlinear Dyn. 100, 2715–2727 (2020)

    Google Scholar 

  15. Gai, L., Ma, W.X., Li, M.: Lump-type solutions, rogue wave type solutions and periodic lump-stripe interaction phenomena to a (3+1)-dimensional generalized breaking soliton equation. Phys. Lett. A 384, 126178 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Shen, Y., Tian, B.: Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves. Appl. Math. Lett. 122, 107301 (2021)

    MATH  Google Scholar 

  17. Yang, D.Y., Tian, B., Wang, M., Zhao, X., Shan, W.R., Jiang, Y.: Lax pair, Darboux transformation, breathers and rogue waves of an N-coupled nonautonomous nonlinear Schrödinger system for an optical fiber or plasma. Nonlinear Dyn. 107, 2657–2666 (2022)

    Google Scholar 

  18. Shen, Y., Tian, B., Liu, S.H.: Solitonic fusion and fission for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Phys. Lett. A 405, 127429 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Kengne, E., Lakhssassi, A.: Compensation process and generation of chirped femtosecond solitons and double-kink solitons in Bose-Einstein condensates with time-dependent atomic scattering length in a time-varying complex potential. Nonlinear Dyn. 104, 4221–4240 (2021)

    Google Scholar 

  20. Sulaiman, T.A., Yusuf, A., Alquran, M.: Dynamics of optical solitons and nonautonomous complex wave solutions to the nonlinear Schrodinger equation with variable coefficients. Nonlinear Dyn. 104, 639–648 (2021)

    Google Scholar 

  21. Patel, A., Kumar, V.: Modulation instability analysis of a nonautonomous (3+1)-dimensional coupled nonlinear Schrödinger equation. Nonlinear Dyn. 104, 4355–4365 (2021)

    Google Scholar 

  22. Lan, Z.Z.: Rogue wave solutions for a coupled nonlinear Schrödinger equation in the birefringent optical fiber. Appl. Math. Lett. 94, 128–134 (2019)

    MATH  Google Scholar 

  23. Ding, C.C., Gao, Y.T., Deng, G.F., Wang, D.: Lax pair, conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrödinger system in an inhomogeneous plasma. Chaos Solitons Fract. 133, 109580 (2020)

    MATH  Google Scholar 

  24. Yang, D.Y., Tian, B., Qu, Q.X., Zhang, C.R., Chen, S.S., Wei, C.C.: Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber. Chaos Solitons Fract. 150, 110487 (2021)

  25. Li, L.Q., Gao, Y.T., Yu, X., Jia, T.T., Hu, L., Zhang, C.Y.: Bilinear forms, bilinear Bäcklund transformation, soliton and breather interactions of a damped variable-coefficient fifth-order modified Korteweg-de Vries equation for the surface waves in a strait or large channel. Chin. J. Phys. (2022). https://doi.org/10.1016/j.cjph.2021.09.004

  26. Feng, Y.J., Gao, Y.T., Jia, T.T., Li, L.Q.: Soliton interactions of a variable-coefficient three-component AB system for the geophysical flows. Mod. Phys. Lett. B 33, 1950354 (2019)

    MathSciNet  Google Scholar 

  27. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

  29. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Google Scholar 

  30. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2020)

    Google Scholar 

  31. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, R.F., Bilige, S., Chaolu, T.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34, 122–139 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Wang, M., Tian, B., Hu, C.C., Liu, S.H.: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrodinger system in a birefringent optical fiber. Appl. Math. Lett. 119, 106936 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Ma, Y.X., Tian, B., Qu, Q.X., Wei, C.C., Zhao, X.: Bäcklund transformations, kink soliton, breather- and travelling-wave solutions for a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics. Chin. J. Phys. 73, 600–612 (2021)

    Google Scholar 

  35. Hu, L., Gao, Y.T., Jia, S.L., Su, J.J., Deng, G.F.: Solitons for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique. Mod. Phys. Lett. B 33, 1950376 (2019)

  36. Gao, X.T., Tian, B., Shen, Y., Feng, C.H.: Comment on “Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system’’. Chaos Solitons Fract. 151, 111222 (2021)

    Google Scholar 

  37. Gao, X.Y., Guo, Y.J., Shan, W.R.: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system. Appl. Math. Lett. 120, 107161 (2021)

  38. Tian, H.Y., Tian, B., Sun, Y., Zhang, C.R.: Three-component coupled nonlinear Schrödinger system in a multimode optical fiber: Darboux transformation induced via a rank-two projection matrix. Commun. Nonlinear Sci. Numer. Simul. 107, 106097 (2022)

  39. Wang, M., Tian, B., Zhou, T.Y.: Darboux transformation, generalized Darboux transformation and vector breathers for a matrix Lakshmanan-Porsezian-Daniel equation in a Heisenberg ferromagnetic spin chain. Chaos Solitons Fract. 152, 111411 (2021)

  40. Hu, L., Gao, Y.T., Jia, T.T., Deng, G.F., Li, L.Q.: Higher-order hybrid waves for the (2+1)-dimensional Boiti–Leon–Manna–Pempinelli equation for an irrotational incompressible fluid via the modified Pfaffian technique. Z. Angew. Math. Phys. 72, 75 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Ding, C.C., Gao, Y.T., Hu, L., Deng, G.F., Zhang, C.Y.: Vector bright soliton interactions of the two-component AB system in a baroclinic fluid. Chaos Solitons Fract. 142, 110363 (2021)

  42. Tian, H.Y., Tian, B., Zhang, C.R., Chen, S.S.: Darboux dressing transformation and superregular breathers for a coupled nonlinear Schrödinger system with the negative coherent coupling in a weakly birefringent fiber. Int. J. Comput. Math. 98, 2445–2460 (2021)

  43. Zhou, T.Y., Tian, B., Chen, S.S., Wei, C.C., Chen, Y.Q.: Bäcklund transformations, Lax pair and solutions of a Sharma-Tasso-Olver-Burgers equation for the nonlinear dispersive waves. Mod. Phys. Lett. B 35, 2150421 (2021)

  44. Li, L.Q., Gao, Y.T., Hu, L., Jia, T.T., Ding, C.C., Feng, Y.J.: Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 100, 2729–2738 (2020)

    Google Scholar 

  45. Liu, F.Y., Gao, Y.T., Yu, X., Hu, L., Wu, X.H.: Hybrid solutions for the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics. Chaos Solitons Fract. 152, 111355 (2021)

  46. Liu, F.Y., Gao, Y.T., Yu, X., Li, L.Q., Ding, C.C., Wang, D.: Lie group analysis and analytic solutions for a (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation in fluid mechanics and plasma physics. Eur. Phys. J. Plus 136, 656 (2021)

    Google Scholar 

  47. Sophocleous, C.: Transformation properties of a variable-coefficient Burgers equation. Chaos Solitons Fract. 20, 1047–1057 (2004)

    MathSciNet  MATH  Google Scholar 

  48. Opanasenko, S., Bihlo, A., Popovych, R.O.: Equivalence groupoid and group classification of a class of variable-coefficient Burgers equations. J. Math. Anal. Appl. 491, 124215 (2020)

    MathSciNet  MATH  Google Scholar 

  49. Pocheketa, O.A., Popovych, R.O., Vaneeva, O.O.: Group classification and exact solutions of variable-coefficient generalized Burgers equations with linear damping. Appl. Math. Comput. 243, 232–244 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Hammerton, P.W., Crighton, D.G.: Old-age behaviour of cylindrical and spherical nonlinear waves: numerical and asymptotic results. Proc. R. Soc. Lond. A 426, 125 (1989)

    MATH  Google Scholar 

  51. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    MathSciNet  Google Scholar 

  52. Cole, J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 8, 225–236 (1951)

    MathSciNet  MATH  Google Scholar 

  53. Bec, J., Khanin, K.: Burgers turbulence. Phys. Rep. 447, 1–66 (2007)

    MathSciNet  Google Scholar 

  54. Fletcher, C.A.J.: A comparison of finite element and finite difference solutions of the one- and two-dimensional Burgers’ equations. J. Comput. Phys. 51, 159–188 (1983)

    MathSciNet  MATH  Google Scholar 

  55. Obaidullah, U., Jamal, S.: A computational procedure for exact solutions of Burgers’ hierarchy of nonlinear partial differential equations. J. Appl. Math. Comput. 65, 541–551 (2021)

  56. Ivanova, N.M., Sophocleous, C., Tracinà, R.: Lie group analysis of two-dimensional variable-coefficient Burgers equation. Z. Angew. Math. Phys. 61, 793–809 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Wazwaz, A.M.: Multiple kink solutions and multiple singular kink solutions for the (2+1)-dimensional Burgers equations. Appl. Math. Comput. 204, 817–823 (2008)

    MathSciNet  MATH  Google Scholar 

  58. Wang, D.S., Li, H.B., Wang, J.: The novel solutions of auxiliary equation and their application to the (2+1)-dimensional Burgers equations. Chaos Solitons Fract. 38, 374–382 (2008)

    MathSciNet  MATH  Google Scholar 

  59. Wang, Q., Chen, Y., Zhang, H.Q.: A new Riccati equation rational expansion method and its application to (2+1)-dimensional Burgers equation. Chaos Solitons Fract. 25, 1019–1028 (2005)

    MathSciNet  MATH  Google Scholar 

  60. Kong, F.L., Chen, S.D.: New exact soliton-like solutions and special soliton-like structures of the (2+1) dimensional Burgers equation. Chaos Solitons Fract. 27, 495–500 (2006)

    MathSciNet  MATH  Google Scholar 

  61. Wang, H.: Lump and interaction solutions to the (2+1)-dimensional Burgers equation. Appl. Math. Lett. 85, 27–34 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Wang, C.J., Dai, Z.D., Liu, C.F.: Interaction between kink solitary wave and rogue wave for (2+1)-dimensional burgers equation. Mediterr. J. Math. 13, 1087–1098 (2016)

    MathSciNet  MATH  Google Scholar 

  63. Hong, K.Z., Wu, B., Che, X.F.: Painlevé analysis and some solutions of (2+1)-dimensional generalized Burgers equations. Commun. Theor. Phys. 39, 393 (2003)

    MathSciNet  Google Scholar 

  64. Tang, X.Y., Lou, S.Y.: Variable separation solutions for the (2+1)-dimensional Burgers equation. Chin. Phys. Lett. 20, 335 (2003)

    Google Scholar 

  65. Chen, S.J., Lü, X., Tang, X.F.: Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simulat. 95, 105628 (2021)

    MathSciNet  MATH  Google Scholar 

  66. Wang, D., Gao, Y.T., Yu, X., Li, L.Q., Jia, T.T.: Bilinear form, solitons, breathers, lumps and hybrid solutions for a (3+1)-dimensional Date-Jimbo–Kashiwara–Miwa equation. Nonlinear Dyn. 104, 1519–1531 (2021)

    Google Scholar 

Download references

Acknowledgements

We express our sincerely thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11805020, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, TY., Tian, B., Chen, Y.Q. et al. Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2\(+\)1)-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn 108, 2417–2428 (2022). https://doi.org/10.1007/s11071-022-07211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07211-1

Keywords

Navigation