Skip to main content
Log in

New \((3+1)\)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work deals with a new \((3+1)\)-dimensional Painlevé integrable fifth-order equation characterized by third-order temporal and spatial dispersions. The Painlevé test is carried out to demonstrate the complete integrability of this model. A rule that governs the dispersion relation with the spatial variables coefficients is reported. We employ the simplified Hirota’s method to obtain multiple soliton solutions. We examine specific cases of the dispersion relations along with their respective coefficients. It is hoped that the results reported in this work can enrich applications in solitary waves theory, and more specifically, in models with third-order temporal dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Data sharing does not apply to this article as no data sets were generated or analyzed during the current study.

References

  1. Wazwaz, A.M.: A new fifth-order nonlinear integrable equation: multiple soliton solutions. Phys. Scr. 83, 015012 (2011)

    Article  Google Scholar 

  2. Wazwaz, A.M.: A new generalized fifth order nonlinear integrable equation. Phys. Scr. 83, 0355003 (2011)

    Google Scholar 

  3. Wazwaz, A.M., Tantawy, S.A.E.: Solving the \((3+1)\)-dimensional KP Boussinesq and BKP-Boussinesq equations by the simplified Hirota method. Nonlinear Dyn. 88, 3017–3021 (2017)

    Article  MathSciNet  Google Scholar 

  4. Wazwaz, A.M.: Painlevé analysis for a new integrable equation combining the modified Calogero–Bogoyavlenskii–Schiff (MCBS) equation with its negative-order form. Nonlinear Dyn. 91, 877–883 (2018)

    Article  Google Scholar 

  5. Kaur, L., Wazwaz, A.M.: Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn. 94, 2469–2477 (2018)

    Article  Google Scholar 

  6. Xu, G.Q., Wazwaz, A.M.: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion. Nonlinear Dyn. 101, 581–595 (2020)

    Article  Google Scholar 

  7. Xu, G.Q.: Painlevé analysis, lump-kink solutions and localized excitation solutions for the \((3+1)\)-dimensional Boiti–Leon–Manna–Pempinelli equation. Appl. Math. Lett. 97, 81–87 (2019)

    Article  MathSciNet  Google Scholar 

  8. Xu, G.Q.: The integrability for a generalized seventh order KdV equation: Painlevé property, soliton solutions, Lax pairs and conservation laws. Phys. Scr. 89, 125201 (2014)

    Article  Google Scholar 

  9. Xu, G.Q., Wazwaz, A.M.: Characteristics of integrability, bidirectional solitons and localized solutions for a \((3+1)\)-dimensional generalized breaking soliton equation. Nonlinear Dyn. 96, 1989–2000 (2019)

    Article  Google Scholar 

  10. Schelte, C., Camelin, P., Marconi, M., Garnache, A., Huyet, G., Beaudoin, G., Sagnes, I., Giudici, M., Javaloyes, J., Gurevich, S.V.: Third order dispersion in time-delayed systems. Phys. Rev. Lett. 123, 043902 (2019)

    Article  Google Scholar 

  11. Zhou, Q., Zhu, Q.: Optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Waves Rand. Complex Media 25(1), 52–59 (2014)

    Article  Google Scholar 

  12. Zhou, Q.: Optical solitons in the parabolic law media with high-order dispersion. Optik 125(18), 5432–5435 (2014)

    Article  Google Scholar 

  13. Ashmead, J.: Time dispersion in quantum mechanics (2019). arXiv:1812.00935v2

  14. Kinsler, P.: Uni-directional optical pulses and temporal propagation: with consideration of spatial and temporal dispersion. J. Opt. 20(2), 025502 (2017). https://doi.org/10.1088/2040-8986/aaa0fc

    Article  Google Scholar 

  15. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  16. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)

    Article  MathSciNet  Google Scholar 

  17. Biswas, A.: Chirp-free bright optical soliton perturbation with Fokas–Lenells equation by traveling wave hypothesis and semi-inverse variational principle. Optik 170, 431–435 (2018)

    Article  Google Scholar 

  18. Biswas, A., Millovic, D., Zerrad, E.: Optical solitons in a Kerr law media with fourth order dispersion. Adv. Stud. Theor. Phys. 2(20), 1007–1012 (2008)

    MATH  Google Scholar 

  19. Biswas, A., Khalique, C.M.: Stationary solution of nonlinear Schrö dinger equation with log law nonlinearity by Lie symmetry analysis. Waves Rand. Complex Media 21(4), 554–558 (2011)

    Article  Google Scholar 

  20. Khalique, C.M.: Solutions and conservation laws of Benjamin–Bona–Mahony–Peregrine equation with power-law and dual power-law nonlinearities. Pramana—J. Phys. 80(6), 413–427 (2013)

    Article  Google Scholar 

  21. Khalique, C.M.: Exact solutions and conservation laws of a coupled integrable dispersionless system. Filomat 26(5), 957–964 (2012)

    Article  MathSciNet  Google Scholar 

  22. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    Article  MathSciNet  Google Scholar 

  23. Leblond, H., Mihalache, D.: Few-optical-cycle solitons: modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 79, 063835 (2009)

    Article  Google Scholar 

  24. Khuri, S.A.: Soliton and periodic solutions for higher order wave equations of KdV type (I). Chaos, Solitons Fractals 26(8), 25–32 (2005)

    Article  MathSciNet  Google Scholar 

  25. Khuri, S.: Exact solutions for a class of nonlinear evolution equations: a unified ansätze approach. Chaos, Solitons Fractals 36(5), 1181–1188 (2008)

    Article  MathSciNet  Google Scholar 

  26. Zhang, B., Zhang, X.L., Dai, C.Q.: Discussions on localized structures based on equivalent solution with different forms of breaking soliton model. Nonlinear Dyn. 87, 2385–2393 (2017)

    Article  MathSciNet  Google Scholar 

  27. Farah, N., Seadawy, A.R., Ahmad, S., Rizvi, S.T., Younis, M.: Interaction properties of soliton molecules and Painleve analysis for nano bioelectronics transmission model. Opt. Quant. Electron. 52, 329–339 (2020)

    Article  Google Scholar 

  28. Liu, X., Zhou, Q., Biswas, A., Alzahrani, A.K., Liu, W.: The similarities and differences of different plane solitons controlled by \((3+1)\)-dimensional coupled variable coefficient system. J. Adv. Res. 24, 167–173 (2020)

    Article  Google Scholar 

  29. Yu, L.J., Wu, G.Z., Wang, Y.Y., Chen, Y.X.: Traveling wave solutions constructed by Mittag–Leffler function of a \((2+1)\)-dimensional space-time fractional NLS equation. Results Phys. 17, 103156 (2020)

    Article  Google Scholar 

  30. Wazwaz, A.M.: Multiple soliton solutions for the \((2+1)\)-dimensional asymmetric Nizhanik–Novikov–Veselov equation. Nonlinear Anal. Ser. A: Theory, Methods Appl. 72, 1314–1318 (2010)

    Article  Google Scholar 

  31. Wazwaz, A.M.: Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dyn. 85, 731–737 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Majid Wazwaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (bmp 823 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wazwaz, AM. New \((3+1)\)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn 106, 891–897 (2021). https://doi.org/10.1007/s11071-021-06872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06872-8

Keywords

Navigation