Skip to main content
Log in

Diversity of neuronal activity is provided by hybrid synapses

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The coexistence of electrical and chemical synaptic communication among excitatory cells has been evidenced by neuroscientists. Nevertheless, theoretical understanding of hybrid synaptic connections in diverse dynamical states of neural networks for self-organization and robustness, still has not been fully studied. Here, we present a model of neural network that includes chemical excitatory coupling in a way of small-world topology and electrical synaptic coupling among adjacent excitatory cells for excitatory population. Firstly, we use this model to investigate the effect of electrical synaptic coupling among excitatory cells on global network behavior with the goal of theoretically understanding mechanisms of generating rich firing patterns. Secondly, we further study the emergence of various firing ripple events by considering the variation of chemical synaptic inhibition and other factors, such as network densities. We found that the excitatory population has a tendency to synchronization as the weights of electrical synaptic coupling among excitatory cells are increased. Moreover, the existence of these electrical synaptic connections can cause various firing patterns of interest by slightly changing the chemical synaptic weights. Our results pave a way in the study of the dynamical mechanisms and computational significance of the contribution of mixed synapse in the neural functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility Statement

The datasets analysed during the current study are available in the github repository at https://github.com/keshengxuu/DiversiryFiringPatterns.

References

  1. Elson, R.C., Selverston, A.I., Huerta, R., Rulkov, N.F., Rabinovich, M.I., Abarbanel, H.D.I.: Synchronous behavior of two coupled biological neurons. Phys. Rev. Lett. 81(25), 5692–5695 (1998)

    Article  Google Scholar 

  2. Jing, J.: Network Functions and Plasticity: Perspectives from Studying Neuronal Electrical Coupling in Microcircuits. Academic Press, Cambridge (2017)

    Google Scholar 

  3. Coombes, S.: Large-scale neural dynamics: simple and complex. NeuroImage 52(3), 731–739 (2010)

    Article  Google Scholar 

  4. Muller, L., Chavane, F., Reynolds, J.: Cortical travelling waves: mechanisms and computational principles. Nat. Rev. Neurosci. 19(5), 255–268 (2018)

    Article  Google Scholar 

  5. Ma, J., Song, X., Tang, J., Wang, C.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Article  Google Scholar 

  6. Wang, Q.Y., Lu, Q.S., Chen, G.R.: Ordered bursting synchronization and complex wave propagation in a ring neuronal network. Phys. A Stat. Mech. Appl. 374(2), 869–878 (2007)

    Article  Google Scholar 

  7. Xu, K., Huang, W., Li, B., Dhamala, M., Liu, Z.: Controlling self-sustained spiking activity by adding or removing one network link. EPL (Europhys. Lett.) 102(5), 50002 (2013)

    Article  Google Scholar 

  8. Xu, K., Zhang, X., Wang, C., Liu, Z.: A simplified memory network model based on pattern formations. Sci. Rep. 4(7568), 1–8 (2014)

    Google Scholar 

  9. De Zeeuw, C.I., Hoebeek, F.E., Bosman, L.W.J., Schonewille, M., Witter, L., Koekkoek, S.K.: Spatiotemporal firing patterns in the cerebellum. Nat. Rev. Neurosci. 12(6), 327–344 (2011)

    Article  Google Scholar 

  10. Tian, C.H., Zhang, X.Y., Wang, Z.H., Liu, Z.H.: Diversity of chimera-like patterns from a model of 2d arrays of neurons with nonlocal coupling. Front. Phys. 12(3), 128904 (2017)

    Article  Google Scholar 

  11. Huo, S., Tian, C., Kang, L., Liu, Z.: Chimera states of neuron networks with adaptive coupling. Nonlinear Dyn. 96(1), 75–86 (2019)

    Article  MATH  Google Scholar 

  12. Pereda, A.E.: Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15(4), 250–263 (2014)

    Article  Google Scholar 

  13. Alcami, P., Pereda, A.E.: Beyond plasticity: the dynamic impact of electrical synapses on neural circuits. Nat. Rev. Neurosci. 20(5), 253–271 (2019)

    Article  Google Scholar 

  14. Sheng, M., Sabatini, B., Sudhof, T. (eds.): The Synapse. Cold Spring Harbor Laboratory Press, New York (2012)

    Google Scholar 

  15. Bennett, M.V.L., Zukin, R.S.: Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41(4), 495–511 (2004)

    Article  Google Scholar 

  16. Buzsaki, G.: Rhythms of the Brain. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  17. Isaacson, J.S., Scanziani, M.: How inhibition shapes cortical activity. Neuron 72(2), 231–243 (2011)

    Article  Google Scholar 

  18. Anderson, J.S., Carandini, M., Ferster, D.: Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J. Neurophysiol. 84(2), 909–926 (2000)

    Article  Google Scholar 

  19. Atallah, B.V., Scanziani, M.: Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 62(4), 566–577 (2009)

    Article  Google Scholar 

  20. Wehr, M., Zador, A.M.: Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426(6965), 442–446 (2003)

    Article  Google Scholar 

  21. Poo, C., Isaacson, J.S.: Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62(6), 850–861 (2009)

  22. van Vreeswijk, C., Sompolinsky, H.: Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274(5293), 1724–1726 (1996)

    Article  Google Scholar 

  23. Bittner, S.R., Williamson, R.C., Snyder, A.C., Litwin-Kumar, A., Doiron, B., Chase, S.M., Smith, M.A., Byron, M.Y.: Population activity structure of excitatory and inhibitory neurons. PLoS One 12(8), 1–27 (2017)

    Article  Google Scholar 

  24. Rubin, R., Abbott, L.F., Sompolinsky, H: Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity. In: Proceedings of the National Academy of Sciences, 114(44):E9366–E9375, (2017)

  25. Connors, B.W., Long, M.A.: Electrical synapses in the mammalian brain. Ann. Rev. Neurosci. 27(1), 393–418 (2004)

    Article  Google Scholar 

  26. Eugenin, E.A., Basilio, D., Sáez, J.C., Orellana, J.A., Raine, C.S., Bukauskas, F., Bennett, M.V.L., Berman, J.W.: The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J. Neuroimmune Pharmacol. 7(3), 499–518 (2012)

    Article  Google Scholar 

  27. Nagy, J.I., Pereda, A.E., Rash, J.E.: Electrical synapses in mammalian cns: past eras, present focus and future directions. Biochim. Biophys. Acta (BBA)-Biomembr. 1860(1), 102–123 (2018)

    Article  Google Scholar 

  28. Sheng, M., Hoogenraad, C.C.: The postsynaptic architecture of excitatory synapses: a more quantitative view. Ann. Rev. Biochem. 76, 823–847 (2007)

    Article  Google Scholar 

  29. Waldvogel, D., van Gelderen, P., Muellbacher, W., Ziemann, U., Immisch, I., Hallett, M.: The relative metabolic demand of inhibition and excitation. Nature 406(6799), 995–998 (2000)

    Article  Google Scholar 

  30. Rash, J.E., Davidson, K.G.V., Kamasawa, N., Yasumura, T., Kamasawa, M., Zhang, C., Michaels, R., Restrepo, D., Ottersen, O.P., Olson, C.O., et al.: Ultrastructural localization of connexins (cx36, cx43, cx45), glutamate receptors and aquaporin-4 in rodent olfactory mucosa, olfactory nerve and olfactory bulb. J. Neurocytol. 34(3–5), 307–341 (2005)

    Article  Google Scholar 

  31. Vivar, C., Traub, R.D., Gutiérrez, R.: Mixed electrical-chemical transmission between hippocampal mossy fibers and pyramidal cells. Eur. J. Neurosci. 35(1), 76–82 (2012)

    Article  Google Scholar 

  32. Hamzei-Sichani, F., Davidson, K.G.V., Yasumura, T., Janssen, W.G.M., Wearne, S.L., Hof, P.R., Traub, R.D., Gutiérrez, R., Ottersen, O.P., Rash, J.E.: Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36. Front. Neuroanat. 6(13), 1–26 (2012)

    Google Scholar 

  33. Kuo, S.P., Schwartz, G.W., Rieke, F.: Nonlinear spatiotemporal integration by electrical and chemical synapses in the retina. Neuron 90(2), 320–332 (2016)

    Article  Google Scholar 

  34. Ma, J., Yang, Z.Q., Yang, L.J., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A 20(9), 639–659 (2019)

    Article  Google Scholar 

  35. Beierlein, M., Gibson, J.R., Connors, B.W.: A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat. Neurosci. 3(9), 904–910 (2000)

    Article  Google Scholar 

  36. Bucher, D., Prinz, A.A., Marder, E.: Animal-to-animal variability in motor pattern production in adults and during growth. J. Neurosci. 25(7), 1611–1619 (2005)

    Article  Google Scholar 

  37. Marder, E., Bucher, D.: Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Ann. Rev. Physiol. 69(1), 291–316 (2007)

    Article  Google Scholar 

  38. Nargeot, R., Le Bon-Jego, M., Simmers, J.: Cellular and network mechanisms of operant learning-induced compulsive behavior in aplysia. Curr. Biol. 19(12), 975–984 (2009)

    Article  Google Scholar 

  39. Wenning, A., Norris, B.J., Doloc-Mihu, A., Calabrese, R.L.: Bringing up the rear: new premotor interneurons add regional complexity to a segmentally distributed motor pattern. J. Neurophys. 106(5), 2201–2215 (2011)

    Article  Google Scholar 

  40. Galarreta, M., Hestrin, S.: Electrical synapses between gaba-releasing interneurons. Nat. Rev. Neurosci. 2(6), 425–433 (2001)

    Article  Google Scholar 

  41. Fukuda, T., Kosaka, T.: The dual network of gabaergic interneurons linked by both chemical and electrical synapses: a possible infrastructure of the cerebral cortex. Neurosci. Res. 38(2), 123–130 (2000)

    Article  Google Scholar 

  42. Fukuda, T., Kosaka, T.: Gap junctions linking the dendritic network of gabaergic interneurons in the hippocampus. J. Neurosci. 20(4), 1519–1528 (2000)

    Article  Google Scholar 

  43. Pernelle, G., Nicola, W., Clopath, C.: Gap junction plasticity as a mechanism to regulate network-wide oscillations. PLOS Comput. Biol. 14(3), 1–29 (2018)

    Article  Google Scholar 

  44. Placantonakis, D.G., Bukovsky, A.A., Aicher, S.A., Kiem, H.P., Welsh, J.P.: Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of connexin36. J. Neurosci. 26(19), 5008–5016 (2006)

    Article  Google Scholar 

  45. Connors, B.W.: Synchrony and so much more: Diverse roles for electrical synapses in neural circuits. Dev. Neurobiol. 77(5), 610–624 (2017)

    Article  Google Scholar 

  46. Llinas, R., Baker, R., Sotelo, C.: Electrotonic coupling between neurons in cat inferior olive. J. Neurophysiol. 37(3), 560–571 (1974)

    Article  Google Scholar 

  47. Hinrichsen, C.F.L.: Coupling between cells of the trigeminal mesencephalic nucleus. J. Dent. Res. 49(6), 1369–1373 (1970)

    Article  Google Scholar 

  48. Deans, M.R., Volgyi, B., Goodenough, D.A., Bloomfield, S.A., Paul, D.L.: Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36(4), 703–712 (2002)

    Article  Google Scholar 

  49. Pan, F., Paul, D.L., Bloomfield, S.A., Völgyi, B.: Connexin36 is required for gap junctional coupling of most ganglion cell subtypes in the mouse retina. J. Comp. Neurol. 518(6), 911–927 (2010)

    Article  Google Scholar 

  50. Bartos, M., Vida, I., Jonas, P.: Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8(1), 45–56 (2007)

    Article  Google Scholar 

  51. Roxin, A., Brunel, N., Hansel, D.: Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys. Rev. Lett. 94(23), 238103 (2005)

    Article  Google Scholar 

  52. Ermentrout, B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Progress Phys. 61(4), 353–430 (1998)

    Article  Google Scholar 

  53. Townsend, R.G., Gong, P.: Detection and analysis of spatiotemporal patterns in brain activity. PLoS Comput. Biol. 14, 1–29 (2018)

    Article  Google Scholar 

  54. Traub, R.D., Jefferys, G.R., Whittington, M.A.: Fast oscillations in cortical circuits. MIT press, Cambridge, MA (1999)

    Book  Google Scholar 

  55. Buzsáki, G., Wang, X.-J.: Mechanisms of gamma oscillations. Ann. Rev. Neurosci. 35, 203–225 (2012)

    Article  Google Scholar 

  56. Fisahn, A., Pike, F.G., Buhl, E.H., Paulsen, O.: Cholinergic induction of network oscillations at 40 hz in the hippocampus in vitro. Nature 394(6689), 186–189 (1998)

    Article  Google Scholar 

  57. Buzsáki, G., Chrobak, J.J.: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5(4), 504–510 (1995)

    Article  Google Scholar 

  58. Benardo, L.S.: Recruitment of gabaergic inhibition and synchronization of inhibitory interneurons in rat neocortex. J. Neurophysiol. 77(6), 3134–3144 (1997)

    Article  Google Scholar 

  59. Skinner, F.K., Zhang, L., Velazquez, J.L.Perez, Carlen, P.L.: Bursting in inhibitory interneuronal networks: a role for gap-junctional coupling. J. Neurophysiol. 81(3), 1274–1283 (1999)

    Article  Google Scholar 

  60. Söhl, G., Maxeiner, S., Willecke, K.: Expression and functions of neuronal gap junctions. Nat. Rev. Neurosci. 6(3), 191–200 (2005)

    Article  Google Scholar 

  61. Tang, G., Xu, K., Jiang, L.: Synchronization in a chaotic neural network with time delay depending on the spatial distance between neurons. Phys. Rev. E 84(4), 046207 (2011)

    Article  Google Scholar 

  62. Xu, K., Maidana, J.P., Castro, S., Orio, P.: Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators. Sci. Rep. 8(8370), 1–12 (2018)

    Google Scholar 

  63. Börgers, C.: An Introduction to Modeling Neuronal Dynamics. Springer, New York (2017)

    Book  MATH  Google Scholar 

  64. Börgers, C., Kopell, N.: Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput. 15(3), 509–538 (2003)

    Article  MATH  Google Scholar 

  65. Rakshit, S., Bera, B.K., Ghosh, D., Sinha, S.: Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks. Phys. Rev. E 97(5), 052304 (2018)

    Article  Google Scholar 

  66. Rakshit, S., Bera, B.K., Ghosh, D.: Synchronization in a temporal multiplex neuronal hypernetwork. Phys. Rev. E 98(3), 032305 (2018)

    Article  MathSciNet  Google Scholar 

  67. Rakshit, S., Ray, A., Bera, B.K., Ghosh, D.: Synchronization and firing patterns of coupled rulkov neuronal map. Nonlinear Dyn. 94(2), 785–805 (2018)

    Article  Google Scholar 

  68. Rakshit, S., Bera, B.K., Bollt, E.M., Ghosh, D.: Intralayer synchronization in evolving multiplex hypernetworks: analytical approach. SIAM J. Appl. Dyn. Syst. 19(2), 918–963 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  69. Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213), 334–337 (1989)

    Article  Google Scholar 

  70. Uhlhaas, P., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D., Singer, W.: Neural synchrony in cortical networks: history, concept and current status. Front. Integr Neurosci. 3(17), 1–17 (2009)

    Google Scholar 

  71. Keane, A., Gong, P.: Propagating waves can explain irregular neural dynamics. J. Neurosci. 35(4), 1591–1605 (2015)

    Article  Google Scholar 

  72. Muller, L., Destexhe, A.: Propagating waves in thalamus, cortex and the thalamocortical system: experiments and models. J. Physiol. Paris 106(5–6), 222–238 (2012)

    Article  Google Scholar 

  73. Mehring, C., Hehl, U., Kubo, M., Diesmann, M., Aertsen, A.: Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biol. Cybern. 88(5), 395–408 (2003)

    Article  MATH  Google Scholar 

  74. Yger, P., El Boustani, S., Destexhe, A., Frégnac, Y.: Topologically invariant macroscopic statistics in balanced networks of conductance-based integrate-and-fire neurons. J. Comput. Neurosci. 31(2), 229–245 (2011)

    Article  MATH  Google Scholar 

  75. Voges, N., Perrinet, L.U.: Complex dynamics in recurrent cortical networks based on spatially realistic connectivities. Front. Comput. Neurosci. 6(41), 1–19 (2012)

    Google Scholar 

  76. Martens, E.A.: Bistable chimera attractors on a triangular network of oscillator populations. Phys. Rev. E 82(1), 016216 (2010)

    Article  MathSciNet  Google Scholar 

  77. Omelchenko, I., Maistrenko, Y., Hövel, P., Schöll, E.: Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106(23), 234102 (2011)

    Article  Google Scholar 

  78. Tian, C., Cao, L., Bi, H., Xu, K., Liu, Z.: Chimera states in neuronal networks with time delay and electromagnetic induction. Nonlinear Dyn. 93(3), 1695–1704 (2018)

    Article  Google Scholar 

  79. Martens, E.A., Laing, C.R., Strogatz, S.H.: Solvable model of spiral wave chimeras. Phys. Rev. Lett. 104(4), 044101 (2010)

    Article  Google Scholar 

  80. Bera, B.K., Rakshit, S., Ghosh, D., Kurths, J.: Spike chimera states and firing regularities in neuronal hypernetworks. Chaos Interdiscip. J. Nonlinear Sci. 29(5), 053115 (2019)

    Article  MathSciNet  Google Scholar 

  81. Kundu, S., Majhi, S., Ghosh, D.: Chemical synaptic multiplexing enhances rhythmicity in neuronal networks. Nonlinear Dyn. 98(3), 1659–1668 (2019)

    Article  Google Scholar 

  82. Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Physi. Life Rev. 28, 100–121 (2019)

    Article  Google Scholar 

  83. Omel’chenko, E., Maistrenko, Y.L., Tass, P.A.: Chimera states: the natural link between coherence and incoherence. Phys. Rev. Lett. 100(4), 044105 (2008)

    Article  Google Scholar 

  84. Tinsley, M.R., Nkomo, S., Showalter, K.: Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys. 8(9), 662–665 (2012)

    Article  Google Scholar 

  85. Hizanidis, J., Kouvaris, N.E., Zamora-López, G., Díaz-Guilera, A., Antonopoulos, C.G.: Chimera-like states in modular neural networks. Sci. Rep. 6(1), 1–10 (2016)

    Google Scholar 

  86. Majhi, S., Perc, M.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos Interdiscip. J. Nonlinear Sci. 22(7), 073109 (2017)

    Article  MathSciNet  Google Scholar 

  87. Calim, A., Hövel, P., Ozer, M., Uzuntarla, M.: Chimera states in networks of type-i morris-lecar neurons. Phys. Rev. E 98(6), 062217 (2018)

    Article  MathSciNet  Google Scholar 

  88. Wang, X.-J., Buzsáki, G.: Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16(20), 6402–6413 (1996)

    Article  Google Scholar 

  89. Palmigiano, Agostina, Geisel, Theo, Wolf, Fred, Battaglia, Demian: Flexible information routing by transient synchrony. Nat. Neurosci. 20(7), 1014–1022 (2017)

    Article  Google Scholar 

  90. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  91. Koch, C., Segev, I.: Methods in neuronal modeling: from ions to networks. MIT press, Cambridge (1997)

    Google Scholar 

  92. Sterratt, D., Graham, B., Gillies, A., Willshaw, D.: Principles of computational modelling in neuroscience. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  93. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  94. Golomb, D., Rinzel, J.: Dynamics of globally coupled inhibitory neurons with heterogeneity. Phys. Rev. E 48(6), 4810 (1993)

    Article  Google Scholar 

  95. Golomb, D., Rinzel, J.: Clustering in globally coupled inhibitory neurons. Phys. D Nonlinear Phenom. 72(3), 259–282 (1994)

    Article  MATH  Google Scholar 

  96. Kuramoto, Y.: Chemical oscillations, waves, and turbulence. Courier Corporation, Hawaii (2003)

    MATH  Google Scholar 

  97. Bertolotti, E., Burioni, R., di Volo, M., Vezzani, A.: Synchronization and long-time memory in neural networks with inhibitory hubs and synaptic plasticity. Phys. Rev. E 95(1), 012308 (2017)

    Article  Google Scholar 

  98. Shanahan, M.: Metastable chimera states in community-structured oscillator networks. Chaos Interdiscip. J. Nonlinear Sci. 20(1), 013108 (2010)

    Article  MathSciNet  Google Scholar 

  99. Crodelle, J., Zhou, D., Kovačič, G., Cai, D.: A computational investigation of electrotonic coupling between pyramidal cells in the cortex. J. Comput. Neurosci. 48(4), 387–407 (2020)

    Article  Google Scholar 

  100. Baptista, M.S., Kakmeni, F.M.M., Grebogi, C.: Combined effect of chemical and electrical synapses in hindmarsh-rose neural networks on synchronization and the rate of information. Phys. Rev. E 82(3), 036203 (2010)

    Article  MathSciNet  Google Scholar 

  101. Liu, C., Wang, J., Yu, H., Deng, B., Wei, X., Tsang, K., Chan, W.: Impact of delays on the synchronization transitions of modular neuronal networks with hybrid synapses. Chaos Interdiscip. J. Nonlinear Sci. 23(3), 033121 (2013)

    Article  Google Scholar 

  102. Sporns, O.: Networks of the Brain. MIT press, Cambridge (2010)

    Book  MATH  Google Scholar 

  103. Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability, and decision making. PLOS Comput. Biol. 4(5), 1–9 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the funding No.4111190017 from Jiangsu University(JSU), China, and Fondecyt Project Nos.3170342 (K.X.), 21191760 (J.P.M.) and 1181076 (P.O.) from ANID, Chile. P.O. is partially funded by the Advanced Center for Electrical and Electronic Engineering (ANID FB0008, Chile). The Centro Interdisciplinario de Neurociencia de Valparaíso (CINV) is a Millennium Institute supported by the ANID grant ICN09-022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesheng Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Maidana, J.P. & Orio, P. Diversity of neuronal activity is provided by hybrid synapses. Nonlinear Dyn 105, 2693–2710 (2021). https://doi.org/10.1007/s11071-021-06704-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06704-9

Keywords

Navigation