Skip to main content
Log in

Coherence resonance modulated by hybrid synapses and time delay in modular small-world neuronal networks with E–I balanced state

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Neurons communicate primarily through synapses. A neuron is usually affected by multiple synapses, which could be chemical/electrical or excitatory/inhibitory ones at the same time. Here, we make the realistic assumption that a excitatory and inhibitory balanced modular small-world network is established and focuses on the effects of hybrid chemical and electrical synapses, noise and time delay on coherence resonance of the constructed network. It is found that when the ratio f of chemical synapses to electrical synapses approaches odd ratios, coherence resonance is better than those f close to even ratios for appropriate noise intensities. Furthermore, with f increasing, it is observed that effects of chemical and electrical synapses on coherence resonance are nearly opposite. It indicates that electrical synapses are more efficient than chemical ones. Meanwhile, multiple coherence resonances are observed when time delay is introduced into the network, and it is independent of f. Finally, we demonstrate that coherence resonance decreases as the number of subnetworks increases, and when the number of subnetworks is larger, the resonance behaviour weakens or vanishes with increasing f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. S.G. Lee, S. Kim, Parameter dependence of stochastic resonance in the stochastic Hodgkin-Huxley neuron. Phys. Rev. E 60, 826 (1999)

    Article  ADS  Google Scholar 

  2. Q.Y. Wang, X. Wang, Synchronization Dynamics of Neurons Coupled Systems (Science Press, Beijing, 2007)

    Google Scholar 

  3. R. Benzi, A. Sutera, A. Vulpiani, The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 14, L453 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  4. L.Gammaitoni, P.Hanggi, P.Jung, et al., Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998)

  5. A.S. Pikovsky, J. Kurths, Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. S.G. Lee, A. Neiman, S. Kim, Coherence resonance in a Hodgkin-Huxley neuron. Phys. Rev. E 57, 3292 (1998)

    Article  ADS  Google Scholar 

  7. T. Mori, S. Kai, Noise-induced entrainment and stochastic resonance in human brain waves. Phys. Rev. Lett. 88, 218101 (2002)

    Article  ADS  Google Scholar 

  8. Y. Gong, M. Wang, Z. Hou, H. Xin, Optimal spike coherence and synchronization on complex Hodgkin-Huxley neuron networks. ChemPhysChem. 6, 1042–1047 (2005)

    Article  Google Scholar 

  9. G. Deco, M.L. Kringelbach, Metastability and coherence: extending the communication through coherence hypothesis using a whole-brain computational perspective. Trends Neurosci. 39, 125 (2016)

    Article  Google Scholar 

  10. A.N.Pisarchik, V.A.Maksimenko, A.V.Andreev, et al., Coherent resonance in the distributed cortical network during sensory information processing. Sci. Rep. 9, 18325 (2019)

  11. T.Aihara, K.Kitajo, et al., Internal noise determines external stochastic resonance in visual perception. Vision. Res. 48, 1569 (2008)

  12. M. Perc, Spatial coherence resonance in excitable media. Phys. Rev. E 72, 016207 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Kreuz, S. Luccioli, A. Torcini, Double coherence resonance in neuron models driven by discrete correlated noise. Phys. Rev. Lett. 97, 238101 (2006)

    Article  ADS  Google Scholar 

  14. Q. Wang, H. Zhang, M. Perc, G. Chen, Multiple firing coherence resonances in excitatory and inhibitory coupled neurons. Commun. Nonlinear Sci. 17, 3979–3988 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Jia, H. Gu, Transition from double coherence resonances to single coherence resonance in a neuronal network with phase noise. Chaos 25, 123124 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Y. Zheng, Y. Yang, Bounded noise-induced coherence resonance in a single Rulkov neuron. Indian J. Phys. 93, 1477–1484 (2019)

    Article  ADS  Google Scholar 

  17. L. Li, Z. Zhao, White-noise-induced double coherence resonances in reduced Hodgkin-Huxley neuron model near subcritical Hopf bifurcation. Phys. Rev. E 105, 034408 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Masoliver, N. Malik, E. Scholl, A. Zakharova, Coherence resonance in a network of FitzHugh-Nagumo systems: interplay of noise, time-delay, and topology. Chaos 27, 101102 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. D. Ristic, M. Gosak, Interlayer connectivity affects the coherence resonance and population activity patterns in two-layered networks of excitatory and inhibitory neurons. Front. Comput. Neurosci. 16, 885720 (2022)

    Article  Google Scholar 

  20. X. Sun, Q. Lu, J. Kurths, Correlated noise induced spatiotemporal coherence resonance in a square lattice network. Phys. A 387, 6679 (2008)

    Article  Google Scholar 

  21. C.C. Hilgetag, M. Kaiser, Clustered organization of cortical connectivity. Neuroinformatics 2, 353–360 (2004)

    Article  Google Scholar 

  22. N.Mishra, R. Karan, B.Biswal, et al., A model for the evolution of the neuronal network in kindled brain slices. Phys. A 505, 444-453 (2018)

  23. D.Meunier, R.Lambiotte, E.T.Bullmore, Modular and Hierarchically Modular Organization of Brain Networks. Front. Neurosci. 4 (2010)

  24. O. Sporns, Network attributes for segregation and integration in the human brain. Curr. Opin. Neurobiol. 23, 162–171 (2012)

    Article  Google Scholar 

  25. X.Jia, J.H.Siegle, S.Durand, G.Heller, Ramirez, et al., Multi-regional module-based signal transmission in mouse visual cortex. Neuron 110, 1585-1598 (2022)

  26. H. Han, S. Ge, H. Wang, Prediction of brain age based on the community structure of functional networks. Biomed. Signal Process. Control 79, 104151 (2023)

    Article  Google Scholar 

  27. P.C. Antonello, T.F. Varley, J. Beggs et al., Self-organization of in vitro neuronal assemblies drives to complex network topology. Elife 11, e74921 (2021)

    Article  Google Scholar 

  28. J.W. Scannell, C. Blakemore, M.P. Young, Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 15, 1463–1483 (1995)

    Article  Google Scholar 

  29. X. Sun, J. Lei, M. Perc, J. Kurths, G. Chen, Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21, 016110 (2011)

    Article  ADS  Google Scholar 

  30. H.Yu, J.Wang, C.Liu, et al., Stochastic resonance on a modular neuronal network of small-world subnetworks with a subthreshold pacemaker. Chaos 21, 047502 (2011)

  31. z.Liu, X.Sun, H.Li, Stochastic multi-resonance induced by noise in a neuronal network of subnetworks. Journal of Dynamics and Control 17, 191-196 (2019)

  32. T.C. Sudhof, R.C. Malenka, Understanding synapses: past, present, and future. Neuron 60, 469–476 (2008)

    Article  Google Scholar 

  33. B.W. Connors, M.A. Long, Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27, 393–418 (2004)

    Article  Google Scholar 

  34. P. Balenzuela, J. Garca-Ojalvo, Role of chemical synapses in coupled neurons with noise. Phys. Rev. E 72, 021901 (2005)

    Article  ADS  Google Scholar 

  35. X. Shi, Q. Wang, Q. Lu, Firing synchronization and temporal order in noisy neuronal networks. Cogn. neurodynamics 2, 195 (2008)

    Article  Google Scholar 

  36. C.I. Zeeuw, C.C. Hoogenraad, S.K.E. Koekkoek et al., Microcircuitry and function of the inferior olive. Trends Neurosci. 21, 391–400 (1998)

    Article  Google Scholar 

  37. D. Friedman, B.W. Strowbridge, Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb. J. Neurophysiol. 89, 2601–2610 (2003)

    Article  Google Scholar 

  38. F.Hamzei-Sichani, K.G.Davidson, T.Yasumura, et al., Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36. Front. Neuroanat. 6, 13 (2012)

  39. N. Kopell, B. Ermentrout, Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. P. Natl. A. Sci. 101, 15482–15487 (2004)

    Article  ADS  Google Scholar 

  40. H. Yu, X. Guo, J. Wang, Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay. Commun. Nonlinear. Sci. 42, 532–544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. G.G. Turrigiano, S.B. Nelson, Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004)

    Article  Google Scholar 

  42. Y. Wang, S. Sugita, T.C. Sudhof, J. Biol, The RIM/NIM family of neuronal C2 domain proteins: interactions with Rab3 and a new class of Src homology 3 domain proteins. J. Biol. Chem. 275, 20033–20044 (2000)

    Article  Google Scholar 

  43. G.G. Turrigiano, S.B. Nelson, Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000)

    Article  Google Scholar 

  44. C.Liu, J.Wang, Yu, H., B.Deng, et al., The effects of time delay on the synchronization transitions in a modular neuronal network with hybrid synapses. Chaos Solitons Fractals 47, 54-65 (2013)

  45. H. Li, X. Sun, J. Xiao, Degree of synchronization modulated by inhibitory neurons in clustered excitatory-inhibitory recurrent networks. Europhys. Lett. 121, 10003 (2018)

    Article  ADS  Google Scholar 

  46. B. Ibarz, J.M. Casado, M.A. Sanjuan, Map-based models in neuronal dynamics. Phys. Rep. 501, 1–74 (2011)

    Article  ADS  Google Scholar 

  47. M. Gosak, R. Markovi, M. Marhl, The role of neural architecture and the speed of signal propagation in the process of synchronization of bursting neurons. Phys. A 391, 2764–2770 (2012)

    Article  Google Scholar 

  48. H. Wu, Z. Hou, H. Xin, Delay-enhanced spatiotemporal order in coupled neuronal systems. Chaos 20, 043140 (2010)

    Article  ADS  Google Scholar 

  49. X.L. Yang, D.V. Senthilkumar, J. Kurths, Impact of connection delays on noise-induced spatiotemporal patterns in neuronal networks. Chaos 22, 043150 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  50. X.Sun, J.Lei, M.Perc, et al., Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21, 016110 (2011)

  51. Q. Wang, G. Chen, Delay-induced intermittent transition of synchronization in neuronal networks with hybrid synapes. Chaos 21, 013123 (2011)

    Article  ADS  Google Scholar 

  52. H. Gu, Z. Zhao, Dynamics of time delay-induced multiple synchronous behaiors in inhibitory coupled neurons. PLoS One 10, e0138593 (2015)

    Article  Google Scholar 

  53. A.S. Pikovsky, J. Kurths, Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. Q. Wang, M. Perc, Z. Duan, G. Chen, Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks. Phys. Lett. A 372, 5681–5687 (2008)

    Article  MATH  ADS  Google Scholar 

  55. H. Yu, X. Guo, J. Wang et al., Adaptive stochastic resonance in self-organized small-world neuronal networks with time delay. Commun. Nonlinear Sci. 29, 346–358 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Y. Hao, Y. Gong, X. Lin, Multiple resonances with time delays and enhancement by non-Gaussian noise in Newman-Watts networks of HodgkinCHuxley neurons. Neurocomputing 74, 1748–1753 (2011)

    Article  Google Scholar 

  57. Y. Jiang, Multiple dynamical resonances in a discrete neuronal model. Phys. Rev. E 71, 057103 (2005)

    Article  ADS  Google Scholar 

  58. X. Sun, G. Li, Synchronization transitions induced by partial time delay in a excitatory-inhibitory coupled neuronal network. Nonlinear Dyn. 89, 2509–2520 (2017)

    Article  MathSciNet  Google Scholar 

  59. G. Li, X. Sun, Effects of hybrid synapses and partial time delay on stochastic resonance in a small-world neuronal network. Acta. Phys. Sinch. Ed. 66, 220502 (2017)

    Google Scholar 

  60. D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  ADS  Google Scholar 

  61. E.R.Kandel, J.H.Schwartz, T.M.Jessell, et al., Principles of neural science. McGraw-Hill, New York (2000)

  62. S.G.Hormuzdi, M.A.Filippov, G.Mitropoulou, et al., Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. BBA-Biomembranes, 1662, 113-137 (2004)

  63. H.Yu, J.Wang, C.Liu, et al., Delay-induced synchronization transitions in modular scale-free neuronal networks with hybrid electrical and chemical synapses. Phys. A 405, 25-34 (2014)

  64. N.F. Rulkov, Regularization of synchronized chaotic bursts. Phys. Rev. Lett. 86, 183 (2001)

    Article  ADS  Google Scholar 

  65. N.F. Rulkov, I. Timofeev, M. Bazhenov, Oscillations in larg-scale cortical networks: map-based model. J. Comput. Neurosci. 17, 203–223 (2004)

    Article  Google Scholar 

  66. Q. Wang, M. Perc, Z. Duan, G. Chen, Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos 19, 023112 (2009)

    Article  ADS  Google Scholar 

  67. X.J. Sun, G.F. Li, Stochastic multi-resonance induced by partial time delay in a Watts-Strogatz small-world neuronal network. Acta. Phys. Sinch. Ed. 65, 090501 (2016)

    Google Scholar 

  68. H. Yu, J. Wang, J. Sun, H. Yu, Effects of hybrid synapses on the vibrational resonance in small-world neuronal networks. Chaos 22, 033105 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  69. E. Yilmaz, M. Uzuntarla, M. Ozer, M. Perc, Stochastic resonance in hybrid scale-free neuronal networks. Phys. A 392, 5735 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  70. J.S. Kim, M. Kaiser, From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency. Phil. Trans. R. Soc. Lond. B 369, 1–9 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region funded by the Education Department of Inner Mongolia Autonomous Region (No. NJZY22353), and by the scientific researching fund of Pioneer College of Inner Mongolia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofang Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Sun, X. Coherence resonance modulated by hybrid synapses and time delay in modular small-world neuronal networks with E–I balanced state. Eur. Phys. J. Spec. Top. (2023). https://doi.org/10.1140/epjs/s11734-023-00992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00992-5

Navigation