Skip to main content
Log in

Robust observer-based stabilizer for perturbed nonlinear complex financial systems with market confidence and ethics risks by finite-time integral sliding mode control

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the finite-time stabilization of nonlinear chaotic financial system (NCFS) by considering market confidence and ethics risk has been investigated. In order to address the stabilization problem of NCFS in the presence of model uncertainties and external disturbances, a robust adaptive finite-time stabilizer has been designed based on a finite-time disturbance observer (FTDO). By utilization of the proposed FTDO, the exact estimation of imposed perturbations is achieved in the sense of finite-time stability, such that a better transient performance can be attained compared with Lyapunov parameter estimation methods. Furthermore, on the basis of proposed FTDO, the continuous control input is developed, so that it avoids the possible chattering effects, and as a result, a free-chattering terminal sliding mode control is achieved in order to drive the state errors of the financial system toward zero in finite time. The investigated adaptive observer-based control strategy can keep the original structure of the system and can be implemented to stabilize other chaotic systems including dynamical economic systems. Finally, via some numerical simulations, the efficiency and reliability of the proposed approach has been illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen, Y., Pi, D., Wang, B.: Enhanced global flower pollination algorithm for parameter identification of chaotic and hyper-chaotic system. Nonlinear Dyn. 97(2), 1343–1358 (2019)

    Article  MATH  Google Scholar 

  2. Asadollahi, M., Ghiasi, A.R., Badamchizadeh, M.A.: Adaptive synchronization of chaotic systems with hysteresis quantizer input. ISA Trans. 98, 137–148 (2020)

    Article  Google Scholar 

  3. Al-khedhairi, A., Matouk, A., Khan, I.: Chaotic dynamics and chaos control for the fractional-order geomagnetic field model. Chaos Solitons Fractals 128, 390–401 (2019)

    Article  MathSciNet  Google Scholar 

  4. Lian, H.H., Xiao, S.P., Wang, Z., Zhang, X.H., Xiao, H.Q.: Further results on sampled-data synchronization control for chaotic neural networks with actuator saturation. Neurocomputing 346, 30–37 (2019)

    Article  Google Scholar 

  5. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mobayen, S.: Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control. ISA Trans. 77, 100–111 (2018)

    Article  Google Scholar 

  7. Shukla, M.K., Sharma, B.: Control and synchronization of a class of uncertain fractional order chaotic systems via adaptive backstepping control. Asian J. Control 20(2), 707–720 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Durdu, A., Uyaroğlu, Y.: The shortest synchronization time with optimal fractional order value using a novel chaotic attractor based on secure communication. Chaos Solitons Fractals 104, 98–106 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhao, L., Yang, G.H.: Adaptive sliding mode fault tolerant control for nonlinearly chaotic systems against dos attack and network faults. J. Franklin Inst. 354(15), 6520–6535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, Q., Liu, S., Chen, Y.: Combination event-triggered adaptive networked synchronization communication for nonlinear uncertain fractional-order chaotic systems. Appl. Math. Comput. 333, 521–535 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Zhou, T., Zuo, Z., Wang, Y.: Quantizer-based triggered control for chaotic synchronization with information constraints. IEEE Trans. cybern. 48(8), 2500–2508 (2017)

    Article  Google Scholar 

  12. Harshavarthini, S., Sakthivel, R., Ma, Y.K., Muslim, M.: Finite-time resilient fault-tolerant investment policy scheme for chaotic nonlinear finance system. Chaos, Solitons Fractals 132, 109567 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tacha, O., Munoz-Pacheco, J., Zambrano-Serrano, E., Stouboulos, I., Pham, V.T.: Determining the chaotic behavior in a fractional-order finance system with negative parameters. Nonlinear Dyn. 94(2), 1303–1317 (2018)

    Article  Google Scholar 

  14. Soradi-Zeid, S., Jahanshahi, H., Yousefpour, A., Bekiros, S.: King algorithm: a novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems. Chaos, Solitons Fractals 132, 109569 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hajipour, A., Tavakoli, H.: Analysis and circuit simulation of a novel nonlinear fractional incommensurate order financial system. Optik 127(22), 10643–10652 (2016)

    Article  Google Scholar 

  16. Huang, C., Cao, J.: Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system. Physica A Stat. Mech. Appl. 473, 262–275 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brock, W.A., Hsieh, D.A., LeBaron, B.D., Brock, W.E., et al.: Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence. MIT press, Cambridge (1991)

    Google Scholar 

  18. Chen, W.C.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos, Solitons Fractals 36(5), 1305–1314 (2008)

    Article  Google Scholar 

  19. Wang, Z., Huang, X., Shen, H.: Control of an uncertain fractional order economic system via adaptive sliding mode. Neurocomputing 83, 83–88 (2012)

    Article  Google Scholar 

  20. Xin, B., Chen, T., Ma, J.: Neimark-sacker bifurcation in a discrete-time financial system. Discrete Dynamics in Nature and Society 2010,(2010)

  21. Mircea, G., Neamţu, M., Bundău, O., OPRIS, D.: Uncertain and stochastic financial models with multiple delays. Int. J. Bifurc. Chaos 22(06), 1250131 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dyn. 67(3), 2171–2182 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xin, B., Li, Y.: 0-1 test for chaos in a fractional order financial system with investment incentive. In: Abstract and Applied Analysis, vol. 2013. Hindawi (2013)

  24. Xin, B., Peng, W., Kwon, Y., Liu, Y.: Modeling, discretization, and hyperchaos detection of conformable derivative approach to a financial system with market confidence and ethics risk. Adv. Diff. Equ. 2019(1), 138 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Earle, T.C.: Trust, confidence, and the 2008 global financial crisis. Risk Anal. Int. J. 29(6), 785–792 (2009)

    Article  Google Scholar 

  26. Hiltzik, M.: The New Deal: A Modern History. Simon and Schuster, New York (2011)

    Google Scholar 

  27. Derwall, J., Koedijk, K., Ter Horst, J.: A tale of values-driven and profit-seeking social investors. J. Bank. Finance 35(8), 2137–2147 (2011)

    Article  Google Scholar 

  28. Rasmussen, D.C.: Adam smith on what is wrong with economic inequality. Am. Polit. Sci. Rev. 110(2), 342 (2016)

    Article  Google Scholar 

  29. Xin, B., Zhang, J.: Finite-time stabilizing a fractional-order chaotic financial system with market confidence. Nonlinear Dyn. 79(2), 1399–1409 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ma, J., Park, J.H., Xu, S.: Global adaptive finite-time control for uncertain nonlinear systems with actuator faults and unknown control directions. Nonlinear Dyn. 97(4), 2533–2545 (2019)

    Article  MATH  Google Scholar 

  32. Zhang, C., Li, Y., Qi, G., Sheng, A.: Distributed finite-time control for coordinated circumnavigation with multiple non-holonomic robots. Nonlinear Dyn. 98(1), 573–588 (2019)

    Article  Google Scholar 

  33. Zhang, R., Xu, B., Zhao, W.: Finite-time prescribed performance control of mems gyroscopes. Nonlinear Dyn. 101, 1–12 (2020)

    Article  Google Scholar 

  34. Rabiee, H., Ataei, M., Ekramian, M.: Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems. Automatica 109, 108515 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yu, X., Yang, J., Li, S.: Disturbance observer-based autonomous landing control of unmanned helicopters on moving shipboard. Nonlinear Dyn. 102(1), 131–150 (2020)

    Article  Google Scholar 

  36. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zuo, Z., Tie, L.: Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47(6), 1366–1375 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zou, A.M., de Ruiter, A.H., Kumar, K.D.: Distributed finite-time velocity-free attitude coordination control for spacecraft formations. Automatica 67, 46–53 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17(2), 101–127 (2005)

  40. Feng, Y., Han, F., Yu, X.: Chattering free full-order sliding-mode control. Automatica 50(4), 1310–1314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mobayen, S., Ma, J., Pujol-Vazquez, G., Acho, L., Zhu, Q.: Adaptive finite-time stabilization of chaotic flow with a single unstable node using a nonlinear function-based global sliding mode. Iran. J. Sci. Technol. Trans. Elect. Eng. 43(1), 339–347 (2019)

    Article  Google Scholar 

  42. Xi, X., Mobayen, S., Ren, H., Jafari, S.: Robust finite-time synchronization of a class of chaotic systems via adaptive global sliding mode control. J. Vib. Control 24(17), 3842–3854 (2018)

    Article  MathSciNet  Google Scholar 

  43. Wang, Z.W., She, J.H., Wang, G.J.: Adaptive equivalent-input-disturbance approach to improving disturbance-rejection performance. Int. J. Autom. Comput. 17, 1–12 (2020)

    Article  Google Scholar 

  44. Mobki, H., Sabegh, A.M., Azizi, A., Ouakad, H.M.: On the implementation of adaptive sliding mode robust controller in the stabilization of electrically actuated micro-tunable capacitor. Microsyst. Technol. 26, 1–14 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Asadollahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, M.J., Mirzaei, M., Aslmostafa, E. et al. Robust observer-based stabilizer for perturbed nonlinear complex financial systems with market confidence and ethics risks by finite-time integral sliding mode control. Nonlinear Dyn 105, 2283–2297 (2021). https://doi.org/10.1007/s11071-021-06695-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06695-7

Keywords

Navigation