Skip to main content
Log in

Finite-time prescribed performance control of MEMS gyroscopes

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the finite-time prescribed performance control of MEMS gyroscopes. From the perspective of practical engineering, this paper arranges the desirable transient and steady-state performances according to the engineering requirements in the controller design procedure. For the tracking performance, prescribed performance control is studied to limited the steady-state error and the maximum overshoot. For the prescribed settling time, super-twisting sliding mode control and nonsingular terminal sliding mode control are employed to achieve finite-time convergence, respectively. The system stability is verified via Lyapunov approach. Through simulation tests, it is demonstrated that prescribed performance and finite-time convergence can be obtained under the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Park, S., Horowitz, R.: Adaptive control for the conventional mode of operation of MEMS gyroscopes. J. Microelectromech. Syst. 12(1), 101–108 (2003)

    Article  Google Scholar 

  2. Park, S., Horowitz, R., Hong, S.K., Nam, Y.: Trajectory-switching algorithm for a MEMS gyroscope. IEEE Trans. Instrum. Meas. 56(6), 2561–2569 (2007)

    Article  Google Scholar 

  3. Fei, J., Batur, C.: A novel adaptive sliding mode control with application to mems gyroscope. ISA Trans. 48(1), 73–78 (2009)

    Article  Google Scholar 

  4. Yue, F., Li, X.: Adaptive sliding mode control based on friction compensation for opto-electronic tracking system using neural network approximations. Nonlinear Dyn. 96(4), 2601–2612 (2019)

    Article  Google Scholar 

  5. Zou, W., Ahn, C.K., Xiang, Z.: Fuzzy-approximation-based distributed fault-tolerant consensus for heterogeneous switched nonlinear multiagent systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.3009730

    Article  Google Scholar 

  6. Xu, B., Shou, Y., Luo, J., Pu, H., Shi, Z.: Neural learning control of strict-feedback systems using disturbance observer. IEEE Trans. Neural Netw. Learn. Syst. 30(5), 1296–1307 (2019)

    Article  MathSciNet  Google Scholar 

  7. Li, S., Ahn, C.K., Guo, J., Xiang, Z.: Neural network-based sampled-data control for switched uncertain nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2954231

    Article  Google Scholar 

  8. Gao, F., Chen, W., Li, Z., Li, J., Xu, B.: Neural network-based distributed cooperative learning control for multiagent systems via event-triggered communication. IEEE Trans. Neural Netw. Learn. Syst. 31(2), 407–419 (2020)

    Article  MathSciNet  Google Scholar 

  9. He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1174–1186 (2018)

    Article  Google Scholar 

  10. He, W., Gao, H., Zhou, C., Yang, C., Li, Z.: Reinforcement learning control of a flexible two-link manipulator: an experimental investigation. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2975232

    Article  Google Scholar 

  11. Zhang, R., Xu, B., Wei, Q., Yang, T., Zhang, P.: Serial-parallel estimation model-based sliding mode control of MEMS gyroscopes. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2981807

    Article  Google Scholar 

  12. Xu, B., Wang, X., Chen, W., Shi, P.: Robust intelligent control of SISO nonlinear systems using switching mechanism. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TSMC.2019.2954231

    Article  Google Scholar 

  13. Deng, Y., Zhang, X., Im, N., Zhang, G., Zhang, Q.: Model-based event-triggered tracking control of underactuated surface vessels with minimum learning parameters. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2951709

    Article  Google Scholar 

  14. Li, T.S., Wang, D., Feng, G., Tong, S.C.: A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. Cybern. 40(3), 915–927 (2010)

    Article  Google Scholar 

  15. Fei, J., Yan, W.: Adaptive control of mems gyroscope using global fast terminal sliding mode control and fuzzy-neural-network. Nonlinear Dyn. 78(1), 103–116 (2014)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y., Xu, B., Zhang, R.: Terminal sliding mode control of mems gyroscopes with finite-time learning. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.1109/TNNLS.2020.3018107

  17. Fei, J., Feng, Z.: Adaptive fuzzy super-twisting sliding mode control for microgyroscope. Complexity Article no.6942642 (2019)

  18. Van, M., Ge, S.S., Ren, H.: Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. IEEE Trans. Cybern. 47(7), 1681–1693 (2017)

    Article  Google Scholar 

  19. Xu, B.: Composite learning finite-time control with application to quadrotors. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1806–1815 (2018)

    Article  Google Scholar 

  20. Li, J., Du, H., Cheng, Y., Wen, G., Chen, X., Jiang, C.: Position tracking control for permanent magnet linear motor via fast nonsingular terminal sliding mode control. Nonlinear Dyn. 97(4), 2595–2605 (2019)

    Article  Google Scholar 

  21. Fei, J., Liang, X.: Adaptive backstepping fuzzy neural network fractional-order control of microgyroscope using a nonsingular terminal sliding mode controller. Complexity Article no.5246074 (2018)

  22. Rahmani, M., Komijani, H., Ghanbari, A., Ettefagh, M.M.: Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm. Microsyst. Technol. 24(11), 2835–2846 (2018)

    Article  Google Scholar 

  23. Xu, B., Zhang, R., Li, S., He, W., Shi, Z.: Composite neural learning-based nonsingular terminal sliding mode control of MEMS gyroscopes. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1375–1386 (2020)

    Article  MathSciNet  Google Scholar 

  24. Xu, B., Shi, Z., Sun, F., He, W.: Barrier lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults. IEEE Trans. Cybern. 49(3), 1047–1057 (2018)

    Article  Google Scholar 

  25. Jin, X.: Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Trans. Autom. Control 64(7), 3046–3053 (2019)

    Article  MathSciNet  Google Scholar 

  26. Jin, X.: Fault tolerant nonrepetitive trajectory tracking for MIMO output constrained nonlinear systems using iterative learning control. IEEE Trans. Cybern. 49(8), 3180–3190 (2019)

    Article  Google Scholar 

  27. Jin, X.: Nonrepetitive leader-follower formation tracking for multiagent systems with LOS range and angle constraints using iterative learning control. IEEE Trans. Cybern. 49(5), 1748–1758 (2019)

    Article  Google Scholar 

  28. Jing, C., Xu, H., Niu, X.: Adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. ISA Trans. 91, 41–51 (2019)

    Article  Google Scholar 

  29. Si, H., Shao, X., Zhang, W.: MLP-based neural guaranteed performance control for MEMS gyroscope with logarithmic quantizer. IEEE Access 8, 38596–38605 (2020)

    Article  Google Scholar 

  30. Zhu, Y., Qiao, J., Guo, L.: Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing. IEEE Trans. Ind. Electron. 66(3), 1973–1983 (2019)

    Article  Google Scholar 

  31. Pishrobat, M.H., Keighobadi, J.: Robust output regulation of a triaxial MEMS gyroscope via nonlinear active disturbance rejection. Int. J. Robust Nonlinear Control 28, 1830–1851 (2018)

    Article  MathSciNet  Google Scholar 

  32. Yang, Y., Hua, C., Guan, X.: Finite time control design for bilateral teleoperation system with position synchronization error constrained. IEEE Trans. Cybern. 46(3), 609–619 (2016)

    Article  Google Scholar 

  33. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  Google Scholar 

  34. Li, S., Ahn, C.K., Xiang, Z.: Command filter based adaptive fuzzy finite-time control for switched nonlinear systems using state-dependent switching method. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2965917

    Article  Google Scholar 

  35. Ding, S.H., Chen, W.H., Mei, K.Q., Smith, D.M.: Disturbance observer design for nonlinear systems represented by input–output models. IEEE Trans. Ind. Electron. 67(2), 1222–1232 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors declare that they have no conflict of interest. This work was supported in part by the Science, Technology and Innovation Commission of Shenzhen Municipality under Grant JCYJ20190806154612782, in part by the National Natural Science Foundation of China under Grant 61933010 and in part by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University under Grant CX201954.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Xu, B. & Zhao, W. Finite-time prescribed performance control of MEMS gyroscopes. Nonlinear Dyn 101, 2223–2234 (2020). https://doi.org/10.1007/s11071-020-05959-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05959-y

Keywords

Navigation