Skip to main content
Log in

Global adaptive finite-time control for uncertain nonlinear systems with actuator faults and unknown control directions

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the global adaptive finite-time stabilization problem is investigated for a class of uncertain nonlinear systems with actuator faults and unknown control directions. The lower bounds of the actuation effectiveness, the upper bounds of the disturbance and the stuck faults are not required to be known a prior. By adopting adding a power integrator technique, a switching-type adaptive finite-time controller is designed and a modified switching mechanism is also proposed. It is proven that the global finite-time stability can be guaranteed by the proposed controller. A simulation example is provided to verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Park, J.H., Shen, H., Chang, X.H., Lee, T.H.: Recent Advances in Control and Filtering of Dynamic Systems with Constrained Signals. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96202-3

  2. Tang, X.D., Tao, G.: An adaptive nonlinear output feedback controller using dynamic bounding with an aircraft control application. Int. J. Adapt. Control Signal Process. 23(7), 609–639 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xu, Y.Y., Tong, S.C., Li, Y.M.: Adaptive fuzzy fault-tolerant control of static var compensator based on dynamic surface control technique. Nonlinear Dyn. 73(3), 2013–2023 (2013)

    Article  MathSciNet  Google Scholar 

  4. Liu, L., Yu, W., Yu, Z.: Active fault-tolerant control design for a submarine semi-physical simulation system. Int. J. Control Autom. Syst. 16(5), 2363–2372 (2018)

    Article  Google Scholar 

  5. Long, Y., Park, J.H., Ye, D.: Finite frequency fault detection for a class of nonhomogeneous Markov jump systems with nonlinearities and sensor failures. Nonlinear Dyn. To be published. https://doi.org/10.1007/s11071-019-04790-4

  6. Gao, Z., Zhou, Z., Jiang, G., Qian, M., Lin, J.: Active fault tolerant control scheme for satellite attitude systems: multiple actuator faults case. Int. J. Control Autom. Syst. 16(4), 1794–1804 (2018)

    Article  Google Scholar 

  7. Long, Y., Park, J.H., Ye, D.: Transmission-dependent fault detection and isolation strategy for networked systems under finite capacity channels. IEEE Trans. Cybern. 47(8), 2268–2278 (2017)

    Article  Google Scholar 

  8. Cao, L., Wang, Y.: Fault-tolerant control for nonlinear systems with multiple intermittent faults and time-varying delays. Int. J. Control Autom. Syst. 16(2), 609–621 (2018)

    Article  Google Scholar 

  9. Hashemi, M., Askari, J., Ghaisari, J.: Adaptive actuator failure compensation for a class of MIMO nonlinear time delay systems. Nonlinear Dyn. 79(2), 865–883 (2015)

    Article  MATH  Google Scholar 

  10. Wang, W., Wen, C.Y.: Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica 46(12), 2082–2091 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, W., Wen, C.Y.: Adaptive compensation for infinite number of actuator failures or faults. Automatica 47(10), 2197–2210 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y.X., Yang, G.H.: Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults. Automatica 72, 177–185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, Z., Xu, S.Y., Wang, B.: Adaptive actuator failure compensation with unknown control gain signs. IET Control Theory Appl. 5(16), 1859–1867 (2011)

    Article  MathSciNet  Google Scholar 

  14. Wang, C.L., Wen, C.Y., Lin, Y.: Adaptive actuator failure compensation for a class of nonlinear systems with unknown control direction. IEEE Trans. Autom. Control 62(1), 385–392 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, M., Tao, G.: Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone. IEEE Trans. Cybern. 46(8), 1851–1862 (2016)

    Article  Google Scholar 

  16. Zhang, L.L., Yang, G.H.: Observer-based adaptive decentralized fault-tolerant control of nonlinear large-scale systems with sensor and actuator faults. IEEE. Trans. Ind. Electron. (2018). https://doi.org/10.1109/TIE.2018.2883267

    Google Scholar 

  17. Liu, L., Liu, Y.J., Tong, S.C.: Fuzzy based multi-error constraint control for switched nonlinear systems and its applications. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2882173

    Google Scholar 

  18. Tong, S.C., Wang, T., Li, Y.M.: Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 22(3), 563–574 (2014)

    Article  Google Scholar 

  19. Tong, S.C., Huo, B.Y., Li, Y.M.: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy Syst. 22(1), 1–15 (2014)

    Article  Google Scholar 

  20. Li, Y.M., Tong, S.C.: Adaptive neural networks decentralized FTC design for nonstrict-feedback nonlinear interconnected large-scale systems against actuator faults. IEEE Trans. Fuzzy Syst. 28(11), 2541–2554 (2017)

    MathSciNet  Google Scholar 

  21. Li, Y.X., Yang, G.H.: Robust fuzzy adaptive fault-tolerant control for a class of nonlinear systems with mismatched uncertainties and actuator faults. Nonlinear Dyn. 81(1–2), 395–409 (2015)

    Article  MATH  Google Scholar 

  22. Li, Y.X., Yang, G.H.: Fuzzy adaptive output feedback fault-tolerant tracking control of a class of uncertain nonlinear systems with nonaffine nonlinear faults. IEEE Trans. Fuzzy Syst. 24(1), 223–234 (2016)

    Article  Google Scholar 

  23. Yin, S., Gao, H.J., Qiu, J.B., Kaynak, O.: Adaptive fault-tolerant control for nonlinear system with unknown control directions based on fuzzy approximation. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 1909–1918 (2017)

    Article  Google Scholar 

  24. Fu, J., Ma, R.C., Chai, T.Y., Hu, Z.T.: Dwell-time-based standard \(H_\infty \) control of switched systems without requiring internal stability of subsystems. IEEE Trans. Autom. Control 64(7), 3019–3025 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, J.S., Wen, C.Y., Wang, W., Song, Y.D.: Design of adaptive finite-time controllers for nonlinear uncertain systems based on given transient specifications. Automatica 69, 395–404 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jin, X.: Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Trans. Autom. Control 64(7), 3046–3053 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, Q., Xie, S.Z., Sun, M.X., He, X.X.: Adaptive nonsingular fixed-time attitude stabilization of uncertain spacecraft. IEEE Trans. Aerosp. Electron. Syst. 54(6), 2937–2950 (2018)

    Article  Google Scholar 

  28. Liu, W.H., Ho, D.W., Xu, S.Y., Zhang, B.Y.: Adaptive finite-time stabilization of a class of quantized nonlinearly parameterized systems. Int. J. Robust Nonlinear Control 27(18), 4554–4573 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, Z.Y., Zhang, C.H., Wang, Z.: Adaptive disturbance attenuation for generalized high-order uncertain nonlinear systems. Automatica 80, 102–109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cheng, Y.Y., Du, H.B., He, Y.G., Jia, R.T.: Finite-time tracking control for a class of high-order nonlinear systems and its applications. Nonlinear Dyn. 76(2), 1133–1140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shi, S., Feng, H.Y., Liu, W.H., Zhuang, G.M.: Finite-time consensus of high-order heterogeneous multi-agent systems with mismatched disturbances and nonlinear dynamics. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-04856-3

    Google Scholar 

  32. Wang, F., Chen, B., Liu, X., Lin, C.: Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1207–1216 (2018)

    Article  Google Scholar 

  33. Wang, F., Chen, B., Lin, C., Meng, X.: Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans. Cybern. 48(6), 1839–1848 (2018)

    Article  Google Scholar 

  34. Wu, J., Chen, W.S., Li, J.: Global finite-time adaptive stabilization for nonlinear systems with multiple unknown control directions. Automatica 69(10), 298–307 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, J., Li, J., Zong, G.D., Chen, W.S.: Global finite-time adaptive stabilization of nonlinearly parameterized systems with multiple unknown control directions. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1405–1414 (2017)

    Article  Google Scholar 

  36. Fu, J., Ma, R.C., Chai, T.Y.: Adaptive finite-time stabilization of a class of uncertain nonlinear systems via logic-based switchings. IEEE Trans. Autom. Control 62(11), 5998–6003 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, L., Liu, Y.J., Tong, S.: Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2828308

    Google Scholar 

  38. Wang, F., Zhang, X.Y.: Adaptive finite time control of nonlinear systems under time-varying actuator failures. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2868329

    Google Scholar 

  39. Wang, F., Liu, Z., Zhang, Y., Chen, C.P.: Adaptive finite-time control of stochastic nonlinear systems with actuator failures. Fuzzy Sets Syst. (2018). https://doi.org/10.1016/j.fss.2018.12.005

    Google Scholar 

Download references

Acknowledgements

This work of J. H. Park was supported by Basic Science Research Programs through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Number NRF-2017R1A2B2004671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju H. Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1. Proof of Proposition 1

By using Lemma 1, we have

$$\begin{aligned} |x_i-x_i^*|\le 2^{1-r_i}\left| x_i^\frac{1}{r_i}-{x_i^*}^\frac{1}{r_i}\right| ^{r_i}\le 2|\xi _i|^{r_i}. \end{aligned}$$
(54)

Then by using Lemma 3, we have

$$\begin{aligned} |b_{i-1}\xi _{i-1}^{2-r_{i-1}}(x_i-x_i^*)|\le \frac{1}{3}\sum \limits _{j=1}^{i-1}\xi _j^\alpha +\vartheta _{i1}\xi _i^\alpha , \end{aligned}$$
(55)

where \(\vartheta _{i1}=\frac{2\bar{b}_{i-1}r_i}{\alpha }\left( \frac{\alpha }{6(2-r_{i-1})\bar{b}_{i-1}}\right) ^{-\frac{2-r_{i-1}}{r_i}}\) is a positive constant.

1.2 A.2. Proof of Proposition 2

According to Assumption 2, we have

$$\begin{aligned} |f_i(\bar{x}_i,\theta )|\le \vartheta \varphi _i(\bar{x}_i)\sum \limits _{j=1}^{i}|x_j|. \end{aligned}$$
(56)

For \(1\le j\le i\), using Lemma 2 gets

$$\begin{aligned} |x_j|\le&\left| \xi _j+{x_j^*}^{\frac{1}{r_j}}\right| ^{r_j}\le |\xi _j|^{r_j}+|{x_j^*}|=|\xi _j|^{r_j}\nonumber \\&+|\xi _{j-1}|^{r_j}\beta _{j-1}(\bar{x}_{j-1},k), \end{aligned}$$
(57)

Since \(r_j\ge r_{i+1}\), for \(1\le j\le i\), substituting (57) into (56) yields

$$\begin{aligned} |f_i(\bar{x}_i,\theta )|\le \,&\vartheta \varphi _i(\bar{x}_i)\sum \limits _{j=1}^{i}(|\xi _j|^{r_j}+|\xi _{j-1}|^{r_j}\beta _{j-1}(\bar{x}_{j-1},k))\nonumber \\ \le&\,\vartheta \varphi _i'(\bar{x}_i,k)\sum \limits _{j=1}^{i}|\xi _j|^{r_{i+1}}, \end{aligned}$$
(58)

where \(\varphi _i'(\bar{x}_i,k)\) is a \(C^1\) positive function. Using Lemma 3 gets

$$\begin{aligned} |\xi _{i}^{2-r_{i}}f_i|\le&\,|\xi _{i}^{2-r_{i}}|\vartheta \varphi _i'(\bar{x}_i,k)\sum \limits _{j=1}^{i}|\xi _j|^{r_{i+1}}\nonumber \\ \le&\, \frac{1}{3}\sum \limits _{j=1}^{i-1}\xi _j^\alpha +\xi _i^\alpha \varphi _{i2}(\bar{x}_i,k)\vartheta _{i2}, \end{aligned}$$
(59)

where \(\vartheta _{i2}=\frac{\vartheta r_{i+1}}{\alpha }\left( \frac{\alpha }{3(2-r_{i})\vartheta }\right) ^{-\frac{2-r_{i}}{r_{i+1}}}\), \(\varphi _{i2}(\bar{x}_i,k)\) is a \(C^1\) positive function.

1.3 A.3. Proof of Proposition 3

To prove Proposition 3, a mathematical deduction is used. More details are shown as follows:

Step 1 For \(i=2\), \(j=1\), we have

$$\begin{aligned} \left| \frac{\partial {x_2^*}^{\frac{1}{r_2}}}{\partial x_j}\right| =\left| \frac{\partial {(x_1\beta _1^{\frac{1}{r_2}}(x_1,k)})}{\partial x_1}\right| \le \, \psi _{2,1}(x_{1},k). \end{aligned}$$
(60)

Step i Suppose that for \(i-1\), \(1\le j\le i-2\), there exists a \(C^1\) positive function \(\psi _{i-1,j}(\bar{x}_{i-2},k)\) such that

$$\begin{aligned} \left| \frac{\partial {x_{i-1}^*}^{\frac{1}{r_{i-1}}}}{\partial x_j}\right| \le \left( \sum \limits _{l=1}^{i-2}\xi _l^{1-r_j}\right) \psi _{i-1,j}(\bar{x}_{i-2},k). \end{aligned}$$
(61)

Next, we will prove that for i, \(1\le j\le i-1\), there exists a \(C^1\) positive function \(\psi _{i,j}(\bar{x}_{i-1},k)\) such that

$$\begin{aligned} \left| \frac{\partial {x_{i}^*}^{\frac{1}{r_i}}}{\partial x_j}\right| \le \left( \sum \limits _{l=1}^{i-1}\xi _l^{1-r_j}\right) \psi _{i,j}(\bar{x}_{i-1},k). \end{aligned}$$
(62)

First of all, we will prove (62) holds for \(1\le j\le i-2\). Noting the fact that \({x_{i}^*}^{\frac{1}{r_i}}=-\xi _{i-1}\beta ^{\frac{1}{r_i}}(\bar{x}_{i-1},k)\) and \(\xi _{i-1}=x_{i-1}^{\frac{1}{r_{i-1}}}-{x_{i-1}^*}^{\frac{1}{r_{i-1}}}\), we have

$$\begin{aligned} \left| \frac{\partial {x_{i}^*}^{\frac{1}{r_i}}}{\partial x_j}\right|&\le \left| \xi _{i-1}\frac{\partial {\beta ^{\frac{1}{r_i}}(\bar{x}_{i-1},k})}{\partial x_j}\right| \nonumber \\&\quad +\left| \beta ^{\frac{1}{r_i}}(\bar{x}_{i-1},k)\frac{\partial {x_{i-1}^*}^{\frac{1}{r_{i-1}}}}{\partial x_j}\right| \nonumber \\&\le \left| \xi _{i-1}\frac{\partial {\beta ^{\frac{1}{r_i}}(\bar{x}_{i-1},k})}{\partial x_j}\right| \nonumber \\&\quad +\left| \beta ^{\frac{1}{r_i}}(\bar{x}_{i-1},k)\right| \left( \sum \limits _{l=1}^{i-2}\xi _l^{1-r_j}\right) \psi _{i-1,j}(\bar{x}_{i-2},k)\nonumber \\&\le \left( \sum \limits _{l=1}^{i-1}\xi _l^{1-r_j}\right) \psi _{i,j}(\bar{x}_{i-1},k). \end{aligned}$$
(63)

Then for \(j=i-1\), we have

$$\begin{aligned} \left| \frac{\partial {x_{i}^*}^{\frac{1}{r_i}}}{\partial x_{i-1}}\right|&\le \left| \xi _{i-1}\frac{\partial {\beta ^{\frac{1}{r_i}}(\bar{x}_{i-1},k})}{\partial x_{i-1}}\right| +\left| \beta ^{\frac{1}{r_i}}(\bar{x}_{i-1},k)\frac{\partial x_{i-1}^{\frac{1}{r_{i-1}}}}{\partial x_{i-1}}\right| \nonumber \\&\le \left| \xi _{i-1}\frac{\partial {\beta ^{\frac{1}{r_i}}(\bar{x}_{i-1},k})}{\partial x_j}\right| \nonumber \\&\quad +\left| \frac{1}{r_{i-1}}\beta ^{\frac{1}{r_i}}(\bar{x}_{i-1},k)\right| \left( \xi _{i-1}^{1-r_{i-1}}+\xi _{i-2}^{1-r_{i-1}}\tilde{\beta }_{i-2}^{\frac{1}{r_{i-1}}-1}\right) \nonumber \\&\le \left( \sum \limits _{l=1}^{i-1}\xi _l^{1-r_j}\right) \psi _{i,i-1}(\bar{x}_{i-1},k). \end{aligned}$$
(64)

Thus, the proof is completed.

1.4 A.4. Proof of Proposition 4

Firstly, from (19), we have

$$\begin{aligned} \frac{\partial W_i}{\partial x_j}=-(2-r_i)\frac{\partial {x_{i}^*}^{\frac{1}{r_i}}}{\partial x_j}\int _{x_i^*}^{x_i}\left( s^{\frac{1}{r_i}}-{x_i^*}^{\frac{1}{r_i}}\right) ^{1-r_i}\text {d}s. \end{aligned}$$
(65)

And it is easy to prove that

$$\begin{aligned} \left| \int _{x_i^*}^{x_i}\left( s^{\frac{1}{r_i}}-{x_i^*}^{\frac{1}{r_i}}\right) ^{1-r_i}\text {d}s\right|&\le |x_i-x_i^*||\xi _i|^{1-r_i}\nonumber \\&\le 2^{1-r_i}|\xi _i|. \end{aligned}$$
(66)

Then, for \(1\le j\le i-1\), we have

$$\begin{aligned} |\dot{x}_j|&=|b_jx_{j+1}+f_j|\le |b_jx_{j+1}|+\vartheta \varphi _j(\bar{x}_j)\sum \limits _{l=1}^{j}|x_l|\nonumber \\&\le \bar{b}_j|\xi _{j+1}|^{r_{j+1}}+\bar{b}_j|\xi _{j}|^{r_{j+1}}\beta _{j}(\bar{x}_{j},k)\nonumber \\&\quad +\vartheta \varphi _j'(\bar{x}_j,k) \sum \limits _{l=1}^{j}|\xi _l|^{r_{j+1}}\nonumber \\&\le \sum \limits _{l=1}^{j+1}|\xi _l|^{r_{j+1}}\vartheta '\varphi _j'(\bar{x}_j,k). \end{aligned}$$
(67)

where \(\vartheta =\max \{\vartheta , \bar{b}_j\}\), \(\varphi _j'(\bar{x}_j,k)\) is a nonnegative function. Then by using Proposition 3, we have

$$\begin{aligned} \left| \frac{\partial {x_{i}^*}^{\frac{1}{r_i}}}{\partial x_j}\dot{x}_j\right|&\le \left( \sum \limits _{l=1}^{i-1}\xi _l^{1-r_j}\right) \left( \sum \limits _{l=1}^{j+1}|\xi _l|^{r_{j+1}}\right) \nonumber \\&\quad \times \psi _{i,j}(\bar{x}_{i-1},k) \vartheta '\varphi _j'(\bar{x}_j,k)\nonumber \\&\le \left( \sum \limits _{l=1}^{i}|\xi _l|^{\frac{2n-1}{2n+1}}\right) \varphi _{i,j}''(\bar{x}_i,k)\vartheta '. \end{aligned}$$
(68)

where \(\varphi _{i,j}''(\bar{x}_i,k)\) is a \(C^1\) positive function. Then by using Lemma 3, we can prove

$$\begin{aligned} \left| \sum \limits _{j=1}^{i-1}\frac{\partial W_i}{\partial x_j}\dot{x}_j\right|&\le (2-r_i)2^{1-r_i}|\xi _i|\left( \sum \limits _{l=1}^{i}|\xi _l|^{\frac{2n-1}{2n+1}}\right) \nonumber \\&\quad \times \left( \sum \limits _{j=1}^{i-1}\varphi _{i,j}''\bar{x}_i,k\right) \vartheta '\nonumber \\&\le \frac{1}{3}\sum \limits _{j=1}^{i-1}\xi _j^\alpha +\xi _i^\alpha (\varphi _{i3}\bar{x}_i,k)\vartheta _{i3}. \end{aligned}$$
(69)

where \(\vartheta _{i3}=\frac{(2-r_i)2^{1-r_i}\vartheta '}{\alpha }(\frac{\alpha }{3r_{2}(2-r_i)2^{1-r_i}\vartheta '})^{-\frac{2n-1}{2n+1}}\); \(\varphi _{i3}(\bar{x}_i,k)\) is a \(C^1\) positive function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Park, J.H. & Xu, S. Global adaptive finite-time control for uncertain nonlinear systems with actuator faults and unknown control directions. Nonlinear Dyn 97, 2533–2545 (2019). https://doi.org/10.1007/s11071-019-05146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05146-8

Keywords

Navigation