Skip to main content

Advertisement

Log in

Dynamics analysis and Hamilton energy control of a generalized Lorenz system with hidden attractor

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Hidden attractor can be found in some dynamic systems. More commonly, it can be excited by the stabilized equilibria, or be generated from the systems without equilibria. The generalized Lorenz system transformed from the Rabinovich system is researched by detecting the generating mechanism under different parameters and initial values, and then we have the good fortune to discover that the hidden attractor is coexisting with the states of stabilization, period, chaos, and even transient chaos. At the same time, the Hamilton energy function of the system is given to discuss the energy transform when the system undergoes a series of oscillations. The compositional principle can be used to design a new chaos control method, which is called Hamilton energy control. By numerical simulating, the feedback gain in the present control method is assigned and then controls the system with hidden attractor to expected states effectively. The feature of the control method can be indicated that the Hamilton energy can be detected during the oscillation control processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. D’Onofrio, A., Manfredi, P.: Bifurcation thresholds in an SIR model with information-dependent vaccination. Math. Model. Nat. Phenom. 2, 26–43 (2016)

    Article  MathSciNet  Google Scholar 

  2. Healey, T.J., Dharmavaram, S.: Symmetry-breaking global bifurcation in a surface continuum phase-field model for lipid bilayer vesicles. Mathematics 11, 1554–1566 (2015)

    MATH  Google Scholar 

  3. Ghergu, M., Ranulldulescu, V.: Bifurcation for a class of singular elliptic problems with quadratic convection term. Comptes R. Math. 338, 831–836 (2015)

    Article  MathSciNet  Google Scholar 

  4. Ohno, W., Endo, T., Ueda, Y.: Extinction and intermittency of the chaotic attractor via crisis in phase-locked loop equation with periodic external forcing term. Electron. Commun. Jpn. 84, 52–61 (2015)

    Article  Google Scholar 

  5. Karsaklian, D.B.A., Akizawa, Y., Kanno, K.: Photonic integrated circuits unveil crisis-induced intermittency. Opt. Express 24, 22198–209 (2016)

    Article  Google Scholar 

  6. Qi, G.Y., Du, S.Z., Chen, G.R.: On a 4-dimensional chaotic system. Chaos Solitons Fractals 23, 1671–1682 (2005)

    Article  MathSciNet  Google Scholar 

  7. Qi, G.Y., Chen, G.R., Zhang, Y.H.: Analysis and circuit implementation of a new 4-D chaotic system. Phys. Lett. A 352, 386–397 (2006)

    Article  Google Scholar 

  8. Wei, J., Wei, S., Chu, Y.S.: Bifurcation and chaotic characteristics of helical gear system and parameter influences. J. Harbin Eng Univ. 34, 1301–1309 (2013)

    Google Scholar 

  9. Bouallegue, K., Chaari, A., Toumi, A.: Multi-scroll and multi-wing chaotic attractor generated with Julia process fractal. Chaos Solitons Fractals 44, 79–85 (2011)

    Article  MathSciNet  Google Scholar 

  10. Yeniçeri, R., Yalçın, M.E.: Multi-scroll chaotic attractors from a generalized time-delay sampled-data system. Int. J. Circuit Theory Appl. 44, 1263–1276 (2016)

    Article  Google Scholar 

  11. Chen, L., Pan, W., Wu, R.: Design and implementation of grid multi-scroll fractional-order chaotic attractors. Chaos 26, 084303 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hu, X.Y., Liu, C.X., Liu, L.: Multi-scroll hidden attractors in improved Sprott A system. Nonlinear Dyn. 86, 1725–1734 (2016)

    Article  Google Scholar 

  13. Shen, S.Y., Ke, M.H., Zhou, P.: A 3D fractional-order chaos system with only one stable equilibrium and controlling chaos. Discrete Dyn. Nat. Soc. 2017, 1–5 (2017)

    MATH  Google Scholar 

  14. Pham, V.T., Volos, C., Jafari, S.: Coexistence of hidden chaotic attractors in a novel no-equilibrium system. Nonlinear Dyn. 87, 2001–2010 (2017)

    Article  Google Scholar 

  15. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)

    Article  MathSciNet  Google Scholar 

  16. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540, 167–218 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kuznetsov, N.V., Leonov, G.A., Seledzhi, S.M.: Hidden oscillations in nonlinear control systems. World Congr. 18, 2506–2510 (2011)

    Google Scholar 

  18. Bragin, V.O., Vagaĭtsev, V.I., Kuznetsov, N.V.: Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. J. Comput. Syst. Sci. Int. 50, 511–543 (2011)

    Article  MathSciNet  Google Scholar 

  19. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Phys. D Nonlinear Phenom. 241, 1482–1486 (2012)

    Article  MathSciNet  Google Scholar 

  20. Zhao, H.T.: Bifurcating Periodic Orbits and Hidden Attractor of Nonlinear Dynamic Systems. Kunming University of Science and Technology, Kunming (2014)

    Google Scholar 

  21. Kuznetsov, N.V., Kuznetsova, O.A., Leonov, G.A.: Localization of hidden Chua attractors by the describing function method. Chaotic Dyn. (2017). https://doi.org/10.1016/j.ifacol.2017.08.470

    Article  Google Scholar 

  22. Dudkowski, D., Jafari, S., Kapitaniak, T.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)

    Article  MathSciNet  Google Scholar 

  23. Chen, M., Li, M.Y., Yu, Q.: Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn. 81, 215–226 (2015)

    Article  MathSciNet  Google Scholar 

  24. Zhang, G., Wu, F.Q., Wang, C.N.: Synchronization behaviors of coupled systems composed of hidden attractors. Int. J. Mod. Phys. B 31, 1750180-1-15 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Saha, P., Saha, D.C., Ray, A.: Memristive non-linear system and hidden attractor. Eur. Phys. J. Spec. Top. 224, 1563–1574 (2015)

    Article  Google Scholar 

  26. Danca, M.F., Kuznetsov, N.: Hidden chaotic sets in a Hopfield neural system. Chaos Solitons Fractals 103, 144–150 (2017)

    Article  MathSciNet  Google Scholar 

  27. Sarasola, C., Torrealdea, F.J., D’Anjou, A.: Energy balance in feedback synchronization of chaotic systems. Phys. Rev. E 69, 011606 (2004)

    Article  Google Scholar 

  28. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  29. Li, J.B.: Generalized Hamiltonian Systems Theory and Its Applications. Science Press, Beijing (1994)

    Google Scholar 

  30. Sira-Ramirez, H., Cruz-Hernandez, C.: Synchronization of chaotic systems: a generalized Hamiltonian systems approach. Int. J. Bifurc. Chaos 11, 1381–1395 (2001)

    Article  Google Scholar 

  31. Torrealdea, F.J., D’Anjou, A., Graña, M.: Energy aspects of the synchronization of model neurons. Phys. Rev. E 74, 011905 (2006)

  32. Torrealdea, F.J., Sarasola, C., D’Anjou, A.: Energy consumption and information transmission in model neurons. Chaos Solitons Fractals 40, 60–68 (2009)

    Article  MathSciNet  Google Scholar 

  33. Moujahid, A., D’Anjou, A., Torrealdea, F., et al.: Energy cost reduction in the synchronization of a pair of nonidentical coupled Hindmarsh–Rose neurons. Trends in Pract. Appl. Agents Multiagent Syst. 22(16), 657–664 (2012)

  34. Ma, J., Wu, F.Q., Ren, G.D.: A class of initials-dependent dynamical systems. Appl. Math. Comput. 298, 65–76 (2017)

    MathSciNet  Google Scholar 

  35. Wang, C.N., Wang, Y., Ma, J.: Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Phys. Sin. 65, 30–35 (2016)

    Google Scholar 

  36. Song, X.L., Jin, W.Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chin. Phys. B 24, 128710 (2015)

    Article  Google Scholar 

  37. Ma, J., Wu, F.Q., Jin, W.Y., et al.: Calculation of Hamilton energy and control of dynamical systems with different types of attractors. Chaos 27, 481–495 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Li, F., Yao, C.G.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84, 2305–2315 (2016)

    Article  MathSciNet  Google Scholar 

  39. Bilotta, E., Blasi, G.D., Stranges, F.: A gallery of Chua attractors. VI. Int J Bifurc Chaos 17, 49–51 (2015)

    MATH  Google Scholar 

  40. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224, 1421–1458 (2015)

    Article  Google Scholar 

  41. Rabinovich, M.: Stochastic autooscillations and turbulence. Uspekhi Fizicheskih Nauk 125, 123–168 (1978)

    Article  Google Scholar 

  42. Liu, B.Z.: Nonlinear Dynamics. Higher Education Press, Beijing (2001)

    Google Scholar 

  43. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  44. Kengne, J., Chedjou, J.C., Kom, M.: Regular oscillations, chaos, and multi-stability in a system of two coupled van der Pol oscillators: numerical and experimental studies. Nonlinear Dyn. 76, 1119–1132 (2014)

    Article  Google Scholar 

  45. Kengne, J., Njitacke, Z.T., Fotsin, H.B.: Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83, 751–765 (2016)

    Article  MathSciNet  Google Scholar 

  46. Zhou, P., Ke, M.H.: A new 3D autonomous continuous system with two isolated chaotic attractors and its topological horseshoes. Complexity 2017, 1–7 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Prof. Jun Ma from Lanzhou University of Technology for the constructive suggestions. This work is supported from the National Natural Science Foundation (No. 51408288), China Postdoctoral Science Foundation(No. 2018M633649XB), Natural Science Foundation of Gansu Province, Government of China (No. 17JR5RA096), and Lzjtu (201606) EP support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Xin-lei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin-lei, A., Li, Z. Dynamics analysis and Hamilton energy control of a generalized Lorenz system with hidden attractor. Nonlinear Dyn 94, 2995–3010 (2018). https://doi.org/10.1007/s11071-018-4539-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4539-9

Keywords

Navigation