Skip to main content
Log in

Dynamical analysis of a simple autonomous jerk system with multiple attractors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In recent years, tremendous research efforts have been devoted to simple chaotic oscillators based on jerk equation that involves a third-time derivative of a single variable. In the present paper, we perform a systematic analysis of a simple autonomous jerk system with cubic nonlinearity. The system is a linear transformation of Model MO5 first introduced in Sprott (Elegant chaos: algebraically simple flow. World Scientific Publishing, Singapore, 2010) prior to the more detailed study by Louodop et al. (Nonlinear Dyn 78:597–607, 2014). The basic dynamical properties of the model are investigated including equilibria and stability, phase portraits, frequency spectra, bifurcation diagrams, and Lyapunov exponent plots. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry-restoring crisis scenarios. One of the key contributions of this work is the finding of a window in the parameter space in which the jerk system experiences the unusual and striking feature of multiple attractors (e.g. coexistence of four disconnected periodic and chaotic attractors). Basins of attraction of various coexisting attractors are computed showing complex basin boundaries. Among the very few cases of lower-dimensional systems (e.g. Newton–Leipnik system) capable of displaying such type of behaviour reported to date, the jerk system with cubic nonlinearity considered in this work represents the simplest and the most ‘elegant’ prototype. An appropriate electronic circuit describing the jerk system is designed and used for the investigations. Results of theoretical analyses are perfectly traced by laboratory experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hens, C., Dana, S.K., Feudel, U.: Extreme multistability: attractors manipulation and robustness. Chaos 25, 053112 (2015)

    Article  MathSciNet  Google Scholar 

  2. Masoller, C.: Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys. Rev. A 50, 2569–2578 (1994)

    Article  Google Scholar 

  3. Cushing, J.M., Henson, S.M., Blackburn, : Multiple mixed attractors in a competition model. J. Biol. Dyn. 1, 347–362 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Upadhyay, R.K.: Multiple attractors and crisis route to chaos in a model of food-chain. Chaos Solitons Fractals 16, 737–747 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Massoudi, A., Mahjani, M.G., Jafarian, M.: Multiple attractors in Koper–Gaspard model of electrochemical. J. Electroanal. Chem. 647, 74–86 (2010)

    Article  Google Scholar 

  6. Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos 24, 1450034 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Leipnik, R.B., Newton, T.A.: Double strange attractors in rigid body motion with linear feedback control. Phys. Lett. A 86, 63–87 (1981)

    Article  MathSciNet  Google Scholar 

  8. Vaithianathan, V., Veijun, J.: Coexistence of four different attractors in a fundamental power system model. IEEE Trans. Circutes Syst. I 46, 405–409 (1999)

    Article  Google Scholar 

  9. Kengne, J.: Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. Int. J. Bifurc. Chaos 25(4), 1550052 (2015)

    Article  MathSciNet  Google Scholar 

  10. Pivka, L., Wu, C.W., Huang, A.: Chua’s oscillator: a compendium of chaotic phenomena. J. Frankl. Inst. 331B(6), 705–741 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuznetsov, A.P., Kuznetsov, S.P., Mosekilde, E., Stankevich, N.V.: Co-existing hidden attractors in a radio-physical oscillator. J. Phys. A Math. Theor. 48, 125101 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kengne, J., Chedjou, J.C., Fonzin Fozin, T., Kyamakya, K., Kenne, G.: On the analysis of semiconductor diode based chaotic and hyperchaotic chaotic generators—a case study. Nonlinear Dyn. 77, 373–386 (2014)

    Article  MathSciNet  Google Scholar 

  13. Sprott, J.C.: Elegant Chaos: Algebraically Simple Flow. World Scientific Publishing, Singapore (2010)

    Book  MATH  Google Scholar 

  14. Louodop, P., Kountchou, M., Fotsin, H., Bowong, S.: Practical finite-time synchronization of jerk systems: theory and experiment. Nonlinear Dyn. 78, 597–607 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sprott, J.C.: Simple chaotic systems and circuits. Am. J. Phys. 68, 758–763 (2000)

  16. Sprott, J.C.: Simplest dissipative chaotic flow. Phys. Lett. A 228, 271–274 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sprott, J.C.: Some simple jerk functions. Am. J. Phys. 65, 537–543 (1997)

    Article  Google Scholar 

  18. Sprott, J.C.: A new chaotic jerk circuit. IEEE Trans. Circuits Syst. II Express Briefs 58, 240–243 (2011)

    Article  Google Scholar 

  19. Malasoma, J.M.: What is the simplest dissipative chaotic jerk equation which is parity invariant ? Phys. Lett. A 264, 383–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eichhorn, R., Linz, S.J., Hanggi, P.: Simple polynomial classes of chaotic jerky dynamics. Chaos Solitons Fractals 13, 1–15 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, C., Sprott, J.C.: Amplitude control approach for chaotic signals. Nonlinear Dyn. 73, 1335–1341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Addison-Wesley, Reading (1994)

    Google Scholar 

  23. Argyris, J., Faust, G., Haase, M.: An Exploration of Chaos. North-Holland, Amsterdam (1994)

    MATH  Google Scholar 

  24. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  25. Wolf, A., Swift, J.B., Swinney, H.L., Wastano, J.A.: Determining Lyapunov exponents from time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo, X., Small, M.: On a dynamical system with multiple chaotic attractors. Int. J. Bifurc. Chaos 17(9), 3235–3251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Letellier, C., Gilmore, R.: Symmetry groups for 3D dynamical systems. J. Phys. A Math. Theor. 40, 5597–5620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540(4), 167–218 (2014)

    Article  MathSciNet  Google Scholar 

  29. Kingni, S.T., Jafari, S., Simo, H., Woafo, P.: Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. Eur. Phys. J. Plus 129, 76 (2014)

    Article  Google Scholar 

  30. Kingni, S.T., Keuninckx, L., Woafo, P., van der Sande, G., Danckaert, J.: Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: theory and electronic implementation. Nonlinear Dyn. 73, 1111–1123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kiers, K., Schmidt, D.: Precision measurement of a simple chaotic circuit. Am. J. Phys. 76(4), 503–509 (2004)

    Article  Google Scholar 

  32. Rosalie, M., Letellier, C.: Systematic template extraction from chaotic attractors: II. Genus-one attractors with unimodal folding mechanisms. J. Phys. A Math. Theor. 48, 235100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rosalie, M., Letellier, C.: Systematic template extraction from chaotic attractors: I. Genus-one attractors with inversion symmetry. J. Phys. A Math. Theor. 46, 375101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, C., Hu, W., Sprott, J.C., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J. Spec. Top. 224, 1493–1506 (2015)

    Article  Google Scholar 

  35. Li, C., Sprott, J.C.: Multistability in a butterfly flow. Int. J. Bifurc. Chaos 23(12), 1350199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kengne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kengne, J., Njitacke, Z.T. & Fotsin, H.B. Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn 83, 751–765 (2016). https://doi.org/10.1007/s11071-015-2364-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2364-y

Keywords

Navigation