Skip to main content

Advertisement

Log in

Energy dependence on modes of electric activities of neuron driven by multi-channel signals

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Neuron can receive electric signals or forcing currents from more than one channel, and these forcing currents could show some diversity. Based on the Hindmarsh–Rose neuron model, mixed forcing currents, which are composed of low-frequency, high-frequency and constant signals, are imposed on the neuron, and multiple modes of electric activities could be observed alternately (in turn) from the neuron. Based on the Helmholtz theorem, the Hamilton energy is calculated to discern the energy dependence on the mode selection of the electric activities of neuron. It is found that the response of electrical activities much depends on the amplitude than the frequency when mixed signals are imposed on the neuron synchronously; however, the rhythm of electrical activities could be adjusted by the frequency of the periodical signals in the mixed signal. It is confirmed that the energy is much dependent on the mode of electrical activities instead of the external forcing currents directly, and a smaller energy occurs under bursting states. The delayed response of Hamilton energy to external forcing currents confirms that neuron contributes to energy coding. These results could be helpful for further investigation on energy problems in neuronal network associated with model transition for collective behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu, L.C., Chen, Y., Zhang, P.: Frequency and phase synchronization of two coupled neurons with channel noise. Euro. Phys. J. B 59, 249–257 (2007)

    Article  Google Scholar 

  2. Shao, R.H., Chen, Y.: Stochastic resonance in time-delayed bistable systems driven by weak periodic signal. Physica A 388, 977–983 (2009)

    Article  Google Scholar 

  3. Liu, C.M., Liu, X.L., Liu, S.Q.: Bifurcation analysis of a Morris–Lecar neuron model. Biol. Cyber. 108, 75–84 (2014)

    Article  MathSciNet  Google Scholar 

  4. Behdad, R., Binczak, S., Dmitrichev, A.S., et al.: Artificial electrical Morris–Lecar neuron. IEEE Trans. Neu. Netw. Lear. Syst. 26, 1875–1884 (2015)

    Article  MathSciNet  Google Scholar 

  5. Gonzalez-Miranda, J.M.: Pacemaker dynamics in the full Morris–Lecar model. Commun. Nonlinear Sci. Numer. Simulat. 19, 3229–3241 (2014)

    Article  MathSciNet  Google Scholar 

  6. Newby, J.M.: Spontaneous excitability in the Morris–Lecar Model with ion channel noise. SIAM J. Appl. Dyn. Syst. 13, 1756–1791 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciszak, M., Bellesi, M.: Synaptic plasticity modulates autonomous transitions between waking and sleep states: insights from a Morris–Lecar model. Chaos 21, 043119 (2011)

    Article  Google Scholar 

  8. Tang, J., Zhang, J., Ma, J., et al.: Astrocyte calcium wave induces seizure-like behavior in neuron network. Sci. China Tech. Sci. doi:10.1007/s11431-016-0293-9 (2016)

  9. Wang, H.T., Wang, L.F., Yu, L.C., et al.: Response of Morris–Lecar neurons to various stimuli. Phys. Rev. E 83, 021915 (2011)

    Article  Google Scholar 

  10. Hindmarsh, J., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. London Ser. B 221(1222), 87–102 (1984)

    Article  Google Scholar 

  11. Ibarz, B., Casado, J.M., Sanjuán, M.A.F.: Map-based models in neuronal dynamics. Phys. Rep. 501, 1–74 (2011)

    Article  Google Scholar 

  12. Storace, M., Linaro, D., de Lange, E.: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations. Nonlinear Dyn. 18, 033128 (2008)

    MathSciNet  Google Scholar 

  13. Innocenti, G., Genesio, R.: On the dynamics of chaotic spiking-bursting transition in the Hindmarsh–Rose neuron. Chaos 19, 023124 (2009)

    Article  MathSciNet  Google Scholar 

  14. Wang, H.X., Wang, Q.Y., Zheng, Y.H.: Bifurcation analysis for Hindmarsh–Rose neuronal model with time-delayed feedback control and application to chaos control. Sci. China Technol. Sci. 57, 872–878 (2014)

    Article  Google Scholar 

  15. Zhang, J.Q., Wang, C.D., Wang, M.S., et al.: Firing patterns transition induced by system size in coupled Hindmarsh–Rose neural system. Neurocomputing 74, 2961–2966 (2011)

    Article  Google Scholar 

  16. Li, Q., Chen, Y., Wang, Y.H.: Coupling parameter in synchronization of diluted neural networks. Phys. Rev. E 65, 041916 (2002)

    Article  Google Scholar 

  17. Barrio, R., Martinez, M.A., Serrano, S., et al.: Macro- and micro-chaotic structures in the Hindmarsh–Rose model of bursting neurons. Chaos 24, 023128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Djeundam, S.R.D., Yamapi, R., Kofane, T.C., et al.: Deterministic and stochastic bifurcations in the Hindmarsh–Rose neuronal model. Chaos 23, 033125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, B., He, Z.M.: Bifurcations and chaos in a two-dimensional discrete Hindmarsh–Rose model. Nonlinear Dyn. 76, 697–715 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong, J., Zhang, G.J., Xie, Y., et al.: Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model. Cogn. Neurodyn. 8, 167–175 (2014)

    Article  Google Scholar 

  21. Thounaojam, U.S., Sharma, P.R., Shrimali, M.D.: Phase switching in Hindmarsh–Rose relay neurons. Euro. Phys. J. B 225, 17–27 (2016)

    Google Scholar 

  22. Djeundam, S.R.D., Yamapi, R., Filatrella, G., et al.: Stability of the synchronized network of Hindmarsh–Rose neuronal models with nearest and global couplings. Commun. Nonlinear Sci. Numer. Simulat. 22, 545–563 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kakmeni, F.M.M., Inack, E.M., Yamakou, E.M.: Localized nonlinear excitations in diffusive Hindmarsh–Rose neural networks. Phys. Rev. E 89, 052919 (2014)

    Article  Google Scholar 

  24. Baptista, M.S., Kakmeni, F.M.M., Grebogi, C.: Combined effect of chemical and electrical synapses in Hindmarsh–Rose neural networks on synchronization and the rate of information. Phys. Rev. E 82, 036203 (2010)

    Article  MathSciNet  Google Scholar 

  25. Wu, Q.J., Zhou, J., Xiang, L., et al.: Impulsive control and synchronization of chaotic Hindmarsh-Rose models for neuronal activity. Chaos Soliton Fractals 41, 2706–2715 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wei, D.Q., Luo, X.S., Qin, Y.H.: Random long-range connections induce activity of complex Hindmarsh–Rose neural networks. Physica A 387, 2155–2160 (2008)

    Article  Google Scholar 

  27. Jalili, M.: Synchronizing Hindmarsh–Rose neurons over Newman–Watts networks. Chaos 19, 033103 (2009)

    Article  MATH  Google Scholar 

  28. Ma, J., Qin, H.X., Song, X.L., et al.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)

    Article  Google Scholar 

  29. Wang, C.N., He, Y.J., Ma, J., et al.: Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity 20, 64–73 (2014)

    Article  MathSciNet  Google Scholar 

  30. Yilmaz, E., Baysal, V., Perc, M., et al.: Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network. Sci. China Technol. Sci. 59, 364–370 (2016)

    Article  Google Scholar 

  31. Yilmaz, E., Baysal, V., Ozer, M., et al.: Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Physica A 4(44), 538–546 (2016)

    Article  MathSciNet  Google Scholar 

  32. Uzun, R., Ozer, M., Perc, M.: Can scale-freeness offset delayed signal detection in neuronal networks? EPL 105, 60002 (2014)

    Article  Google Scholar 

  33. Qin, H.X., Ma, J., Jin, W.Y., et al.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57, 936–946 (2014)

    Article  Google Scholar 

  34. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2042 (2015)

    Article  Google Scholar 

  35. Ma, J., Xu, Y., Ren, G.D., et al.: Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn. 84, 497–509 (2016)

    Article  MathSciNet  Google Scholar 

  36. Song, X.L., Wang, C.N., Ma, J., et al.: Collapse of ordered spatial pattern in neuronal network. Physica A 451, 95–112 (2016)

    Article  MathSciNet  Google Scholar 

  37. Wang, C.N., Ma, J., Hu, B.L., et al.: Formation of multi-armed spiral waves in neuronal network induced by adjusting ion channel conductance. Int. J. Mod. Phys. B 29, 1550043 (2015)

    Article  MathSciNet  Google Scholar 

  38. Wang, R.B., Zhang, Z.K., Chen, G.R.: Energy coding and energy functions for local activities of the brain. Neurocomputing 73(1–3), 139–150 (2009)

  39. Laughlin, S.B., Attwell, D.: An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001)

    Article  Google Scholar 

  40. Torrealdea, F.J., Sarasola, C., d’Anjou, A., Moujahid, A., de Mendizábal, N.V.: Energy efficiency of information transmission by electrically coupled neurons. BioSystems 97, 60–71 (2009)

    Article  MATH  Google Scholar 

  41. Torrealdea, F.J., Sarasola, C., d’Anjou, A.: Energy consumption and information transmission in model neurons. Chaos Solitons Fractals 40(1), 60–68 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kobe, D.H.: Helmholtz’s theorem revisited. Am. J. Phys. 54(6), 552–554 (1986)

    Article  Google Scholar 

  43. Song, X.L., Jin, W.Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chin. Phys. B 24, 128710 (2015)

    Article  Google Scholar 

  44. Li, F., Yao, C.G.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84, 2305–2315 (2016)

    Article  MathSciNet  Google Scholar 

  45. Gu, H.G., Pan, B.B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81, 2107–2126 (2015)

    Article  MathSciNet  Google Scholar 

  46. Xu, Y.Y., Ni, L., Wang, R.B.: A neural network model of spontaneous up and down transitions. Nonlinear Dyn. 84, 1541–1551 (2016)

    Article  MathSciNet  Google Scholar 

  47. Lv, M., Wang, C.N., Ren, G.D., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  48. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  49. Wang, C.N., Guo, S.L., Xu, Y., et al.: Formation of autapse connected to neuron and its biological function. Complexity 2017, 5436737 (2017)

    MathSciNet  Google Scholar 

  50. Wang, C.N., Wang, Y., Ma, J.: Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Phys. Sin. 65, 240501 (2016)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grant Nos. 11365014 and 11372122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunni Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, C., Ren, G. et al. Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dyn 89, 1967–1987 (2017). https://doi.org/10.1007/s11071-017-3564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3564-4

Keywords

Navigation