Skip to main content
Log in

Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the fractional-order generalized Lotka–Volterra (GLV) model and its discretization are investigated qualitatively. A sufficient condition for existence and uniqueness of the solution of the proposed system is shown. Analytical conditions of the stability of the system’s three non-negative steady states are proved. The conditions of the existence of Hopf bifurcation in the fractional-order GLV system are discussed. The necessary conditions for this system to remain chaotic are obtained. Based on the stability theory of fractional-order differential systems, a new control scheme is introduced to stabilize the fractional-order GLV system to its steady states. Furthermore, the analytical conditions of stability of the discretized system are also studied. It is shown that the system’s fractional parameter has effect on the stability of the discretized system which shows rich variety of dynamical analysis such as bifurcations, an attractor crisis and chaotic attractors. Numerical simulations are used to support the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adolfsson, K.: Nonlinear fractional order viscoelasticity at large strains. Nonlinear Dyn. 38, 233–246 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. El-Sayed, A.M.A.: Fractional-order diffusion-wave equation. Int. J. Theor. Phys. 35, 311–322 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liang, J., Chen, Y., Fullmer, R.: Boundary stabilization and disturbance rejection for time fractional order diffusion-wave equations. Nonlinear Dyn. 38, 339–354 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. El-Sayed, A.M.A., Nour, H.M., Elsaid, A., Matouk, A.E., Elsonbaty, A.: Dynamical behaviors, circuit realization, chaos control and synchronization of a new fractional order hyperchaotic system. Appl. Math. Model. 40, 3516–3534 (2016)

    Article  MathSciNet  Google Scholar 

  5. Aghababa, M.P.: Fractional modeling and control of a complex nonlinear energy supply-demand system. Complexity 20, 74–86 (2015)

    Article  MathSciNet  Google Scholar 

  6. Aghababa, M.P., Borjkhani, M.: Chaotic fractional-order model for muscular blood vessel and its control via fractional control scheme. Complexity 20, 37–46 (2014)

    Article  MathSciNet  Google Scholar 

  7. El-Misiery, A.E.M., Ahmed, E.: On a fractional model for earthquakes. Appl. Math. Comput. 178, 207–211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhao, J., Wang, S., Chang, Y., Li, X.: A novel image encryption scheme based on an improper fractional-order chaotic system. Nonlinear Dyn. 80, 1721–1729 (2015)

    Article  MathSciNet  Google Scholar 

  9. Ahmed, E., Elgazzar, A.S.: On fractional order differential equations model for nonlocal epidemics. Phys. A 379, 607–614 (2007)

    Article  MathSciNet  Google Scholar 

  10. Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  11. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976)

    Article  Google Scholar 

  12. Samardzija, N., Greller, L.D.: Explosive route to chaos through a fractal torus in a generalized Lotka–Volterra model. Bull. Math. Biol. 50, 465–491 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    Book  MATH  Google Scholar 

  14. Mahmoud, G.M., Bountis, T.: The dynamics of systems of complex nonlinear oscillators. Int. J. Bifurc. Chaos 14, 3821–3846 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matouk, A.E., Agiza, H.N.: Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor. J. Math. Anal. Appl. 341, 259–269 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matouk, A.E.: Dynamical analysis, feedback control and synchronization of Liu dynamical system. Nonlinear Anal. Theor. Methods Appl. 69, 3213–3224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mahmoud, G.M., Aly, S.A., AL-Kashif, M.A.: Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system. Nonlinear Dyn. 51, 171–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62, 875–882 (2010)

    Article  MATH  Google Scholar 

  19. Tramontana, F., Elsadany, A.A.: Heterogeneous triopoly game with isoelastic demand function. Nonlinear Dyn. 68, 187–193 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. El-Sayed, A.M.A., Nour, H.M., Elsaid, A., Matouk, A.E., Elsonbaty, A.: Circuit realization, bifurcations, chaos and hyperchaos in a new 4D system. Appl. Math. Comput. 239, 333–345 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. 42, 485–490 (1995)

    Article  Google Scholar 

  22. Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003)

    Article  Google Scholar 

  23. Li, C.G., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Phys. A 341, 55–61 (2004)

    Article  MathSciNet  Google Scholar 

  24. Matouk, A.E.: Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol–Duffing circuit. Commun. Nonlinear Sci. Numer. Simul. 16, 975–986 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hegazi, A.S., Matouk, A.E.: Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system. Appl. Math. Lett. 24, 1938–1944 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zeng, C., Yang, Q., Wang, J.: Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci. Nonlinear Dyn. 65, 457–466 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, L., Liu, A.: Analysis and synchronization for a new fractional-order chaotic system with absolute value term. Nonlinear Dyn. 70, 601–608 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Aghababa, M.P.: Chaos in a fractional-order micro-electro-mechanical resonator and its suppression. Chin. Phys. B 21, 100505 (2012)

    Article  Google Scholar 

  29. Aghababa, M.P.: Chaotic behavior in fractional-order horizontal platform systems and its suppression using a fractional finite-time control strategy. J. Mech. Sci. Tech. 28, 1875–1880 (2014)

    Article  Google Scholar 

  30. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Fast projective synchronization of fractional order chaotic and reverse chaotic systems with its application to an affine cipher using date of birth (DOB). Nonlinear Dyn. 80, 1883–1897 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, C.G., Liao, X.F., Yu, J.B.: Synchronization of fractional order chaotic systems. Phys. Rev. E 68, 067203 (2003)

    Article  Google Scholar 

  32. Matouk, A.E.: Chaos synchronization between two different fractional systems of Lorenz family. Math. Prob. Eng. 2009, Article ID 572724 (2009)

  33. Matouk, A.E.: Dynamical behaviors, linear feedback control and synchronization of the fractional order Liu system. J. Nonlinear Syst. Appl. 1, 135–140 (2010)

    Google Scholar 

  34. Hegazi, A.S., Ahmed, E., Matouk, A.E.: The effect of fractional order on synchronization of two fractional order chaotic and hyperchaotic systems. J. Fract. Calc. Appl. 1(3), 1–15 (2011)

    Google Scholar 

  35. Odibat, Z., Corson, N., Aziz-Alaoui, M., Bertelle, C.: Synchronization of chaotic fractional order systems via linear control. Int. J. Bifurc. Chaos 20, 81–97 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yadav, V.K., Agrawal, S.K., Srivastava, M., Das, S.: Phase and anti-phase synchronizations of fractional order hyperchaotic systems with uncertainties and external disturbances using nonlinear active control method. Int. J. Dyn. Control doi:10.1007/s40435-015-0186-x (2015, in press)

  37. Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69, 247–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hegazi, A.S., Ahmed, E., Matouk, A.E.: On chaos control and synchronization of the commensurate fractional order Liu system. Commun. Nonlinear Sci. Numer. Simul. 18, 1193–1202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Matouk, A.E., Elsadany, A.A.: Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique. Appl. Math. Lett. 29, 30–35 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Radwan, A.G., Moaddy, K., Salama, K.N., Momani, S., Hashim, I.: Control and switching synchronization of fractional order chaotic systems using active control technique. J. Adv. Res. 5, 125–132 (2014)

    Article  MATH  Google Scholar 

  41. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Synchronization and an application of a novel fractional order King Cobra chaotic system. Chaos 24, 033105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, X., Hong, L., Yang, L.: Fractional-order complex T system: bifurcations, chaos control, and synchronization. Nonlinear Dyn. 75, 589–602 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Aghababa, M.P.: A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems. Nonlinear Dyn. 78, 2129–2140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Aghababa, M.P.: A switching fractional calculus-based controller for normal non-linear dynamical systems. Nonlinear Dyn. 75, 577–588 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Aghababa, M.P.: Synchronization and stabilization of fractional second-order nonlinear complex systems. Nonlinear Dyn. 80, 1731–1744 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Matouk, A.E.: Chaos synchronization of a fractional-order modified Van der Pol-Duffing system via new linear control, backstepping control and Takagi-Sugeno fuzzy approaches. Complexity doi:10.1002/cplx.21719 (2015, in press)

  47. Balasubramaniam, P., Muthukumar, P., Ratnavelu, K.: Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlinear Dyn. 80, 249–267 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem. Int. J. Dyn. Control doi:10.1007/s40435-015-0169-y (2015, in press)

  49. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1925)

    MATH  Google Scholar 

  50. Volterra, V.: Variazioni e fluttuazioni del numero di individui in specie animali conviventi. Mem. Acad. Lincei. 2, 31–113 (1926)

    MATH  Google Scholar 

  51. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 72, 896–903 (1991)

    Article  Google Scholar 

  52. Lv, S., Zhao, M.: The dynamic complexity of a three species food chain model. Chaos Solitons Fractals 37, 1469–1480 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Elsadany, A.A.: Dynamical complexities in a discrete-time food chain. Comput. Ecol. Softw. 2, 124–139 (2012)

    Google Scholar 

  54. El-Sayed, A.M.A., El-Misiery, A.E.M., El-Saka, H.A.A.: On the fractional-order logistic equation. Appl. Math. Lett. 20, 817–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Das, S., Gupta, P.K.: A fractional predator prey model and its solution. Int. J. Nonlinear Sci. Numer. Simul. 10, 873–876 (2009)

    Article  Google Scholar 

  57. Rivero, M., Trujillo, J.J., Vazquez, L., Velasco, M.P.: Fractional dynamics of populations. Appl. Math. Comput. 218, 1089–1095 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Javidi, M., Nyamoradi, N.: Dynamic analysis of a fractional order prey-predator interaction with harvesting. Appl. Math. Model. 37, 8946–8956 (2013)

    Article  MathSciNet  Google Scholar 

  59. Rihan, F.A., Lakshmanan, S., Hashish, A.H., Rakkiyappan, R., Ahmed, E.: Fractional-order delayed predator-prey systems with Holling type-II functional response. Nonlinear Dyn. 80, 777–789 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Matouk, A.E., Elsadany, A.A., Ahmed, E., Agiza, H.N.: Dynamical behavior of fractional-order Hastings–Powell food chain model and its discretization. Commun. Nonlinear Sci. Numer. Simul. 27, 153–167 (2015)

    Article  MathSciNet  Google Scholar 

  61. Elsadany, A.A., Matouk, A.E.: Dynamical behaviors of fractional-order Lotka–Volterra predator-prey model and its discretization. J. Appl. Math. Comput. 49, 269–283 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Munkhammar, J.: Chaos in a fractional order logistic map. Fract. Calc. Appl. Anal. 16, 511–519 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Smale, S.: On the differential equations of species in competition. J. Math. Biol. 3, 5–7 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  64. Costello, J.S.: Synchronization of chaos in a generalized Lotka–Volterra attractor. Nonlinear J. 1, 11–17 (1999)

    Google Scholar 

  65. Srivastava, M., Agrawal, S.K., Das, S.: Synchronization of chaotic fractional order Lotka–Volterra system. Int. J. Nonlinear Sci. 13, 482–494 (2012)

  66. Agrawal, S.K., Srivastava, M., Das, S.: Synchronization between fractional-order Ravinovich–Fabrikant and Lotka–Volterra systems. Nonlinear Dyn. 69, 2277–2288 (2012)

    Article  MathSciNet  Google Scholar 

  67. Tian, J., Yu, Y., Wang, H.: Stability and bifurcation of two kinds of three-dimensional fractional Lotka–Volterra systems. Math. Prob. Eng. 2014, Article ID 695871 (2014)

  68. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  69. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Application Multi-conference, vol. 2, pp. 963–968. IMACS, IEEE-SMC Proceedings, Lille (1996)

  70. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys. Lett. A 358, 1–4 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  71. Matouk, A.E.: Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system. Phys. Lett. A 373, 2166–2173 (2009)

    Article  MATH  Google Scholar 

  72. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)

    MathSciNet  MATH  Google Scholar 

  73. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  74. El-Sayed, A.M.A., Salman, S.M.: On a discretization process of fractional order Riccati’s differential equation. J. Fract. Calc. Appl. 4, 251–259 (2013)

    Google Scholar 

  75. El-Raheem, Z.F., Salman, S.M.: On a discretization process of fractional-order logistic differential equation. J. Egypt. Math. Soc. 22, 407–412 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  76. Elaydi, S.N.: An Introduction to Difference Equations. 3rd edn. Undergraduate Texts in Math. Springer, New York (2005)

  77. Hua, Z., Teng, Z., Jiang, H.: Stability analysis in a class of discrete SIRS epidemic models. Nonlinear Anal. Real World Appl. 13, 2017–2033 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for providing some helpful comments which help to improve the style of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Matouk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matouk, A.E., Elsadany, A.A. Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model. Nonlinear Dyn 85, 1597–1612 (2016). https://doi.org/10.1007/s11071-016-2781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2781-6

Keywords

Navigation