Skip to main content
Log in

Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel fractional-order terminal sliding mode control approach is introduced to control/synchronize chaos of fractional-order nonautonomous chaotic/hyperchaotic systems in a given finite time. The effects of model uncertainties and external disturbances are fully taken into account. First, a novel fractional nonsingular terminal sliding surface is proposed and its finite-time convergence to zero is analytically proved. Then an appropriate robust fractional sliding mode control law is proposed to ensure the occurrence of the sliding motion in a given finite time. The fractional version of the Lyapunov stability is used to prove the finite-time existence of the sliding motion. The proposed control scheme is applied to control/synchronize chaos of autonomous/nonautonomous fractional-order chaotic/hyperchaotic systems in the presence of both model uncertainties and external disturbances. Two illustrative examples are presented to show the efficiency and applicability of the proposed finite-time control strategy. It is worth to notice that the proposed fractional nonsingular terminal sliding mode control approach can be applied to control a broad range of nonlinear autonomous/nonautonomous fractional-order dynamical systems in finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilkie, K.P., Drapaca, C.S., Sivaloganathan, S.: A nonlinear viscoelastic fractional derivative model of infant hydrocephalus. Appl. Math. Comput. 217, 8693–8704 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Luo, Y., Chen, Y.Q., Pi, Y.: Experimental study of fractional order proportional derivative controller synthesis for fractional order systems. Mechatronics 21, 204–214 (2011)

    Article  Google Scholar 

  3. Sabatier, J., Cugnet, M., Laruelle, S., Grugeon, S., Sahut, B., Oustaloup, A., Tarascon, J.M.: A fractional order model for lead-acid battery crankability estimation. Commun. Nonlinear Sci. Numer. Simul. 15, 1308–1317 (2010)

    Article  Google Scholar 

  4. Ertürk, V.S., Odibat, Z.M., Momani, S.: An approximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells. Comput. Math. Appl. 62, 996–1002 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Laskin, N.: Fractional market dynamics. Physica A 287, 482–492 (2000)

    Article  MathSciNet  Google Scholar 

  6. Rivero, M., Trujillo, J.J., Vàzquez, L., Velasco, M.P.: Fractional dynamics of populations. Appl. Math. Comput. 218, 1089–1095 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, J., Ma, C., Jiang, Z., Liu, S.: Nonlinear dynamic analysis of fractional order rub-impact rotor system. Commun. Nonlinear Sci. Numer. Simul. 16, 1443–1463 (2011)

    Article  Google Scholar 

  8. Ionescu, C., Machado, J.T., De Keyser, R.: Fractional-order impulse response of the respiratory system. Comput. Math. Appl. 62, 845–854 (2011)

    Article  MATH  Google Scholar 

  9. Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54, 263–282 (2008)

    Article  MATH  Google Scholar 

  10. Rapaić, M.R., Jeličić, Z.D.: Optimal control of a class of fractional heat diffusion systems. Nonlinear Dyn. 62, 39–51 (2010)

    Article  MATH  Google Scholar 

  11. Tavazoei, M.S., Haeri, M., Bolouki, S., Siami, M.: Using fractional-order integrator to control chaos in single-input chaotic systems. Nonlinear Dyn. 55, 179–190 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delavari, H., Ranjbar, A.N., Ghaderi, R., Momani, S.: Fractional order control of a coupled tank. Nonlinear Dyn. 61, 383–397 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Aghababa, M.P., Heydari, A.: Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities. Appl. Math. Model. (2011). doi:10.1016/j.apm.2011.09.023

    Google Scholar 

  14. Aghababa, M.P., Aghababa, H.P.: Synchronization of nonlinear chaotic electromechanical gyrostat systems with uncertainties. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0181-5

    Google Scholar 

  15. Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 16, 2853–2868 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35, 3080–3091 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aghababa, M.P., Aghababa, H.P.: Adaptive finite-time stabilization of uncertain non-autonomous chaotic electromechanical gyrostat systems with unknown parameters. Mech. Res. Commun. 38, 500–505 (2011)

    Article  Google Scholar 

  18. Aghababa, M.P.: A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs. Chin. Phys. B 20, 090505 (2011)

    Article  Google Scholar 

  19. Wu, X., Wang, H.: A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn. 61, 407–417 (2010)

    Article  MATH  Google Scholar 

  20. Petráš, I.: Chaos in the fractional-order Volta’s system: modeling and simulation. Nonlinear Dyn. 57, 157–170 (2009)

    Article  MATH  Google Scholar 

  21. Zeng, C., Yang, Q., Wang, J.: Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci. Nonlinear Dyn. 65, 457–466 (2011)

    Article  MathSciNet  Google Scholar 

  22. Wang, Z., Sun, Y., Qi, G., van Wyk, B.J.: The effects of fractional order on a 3-D quadratic autonomous system with four-wing attractor. Nonlinear Dyn. 62, 139–150 (2010)

    Article  MATH  Google Scholar 

  23. Wang, X.-Y., Song, J.-M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14, 3351–3357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hegazi, A.S., Matouk, A.E.: Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system. Appl. Math. Lett. 24, 1938–1944 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tavazoei, M.S., Haeri, M.: Describing function based methods for predicting chaos in a class of fractional order differential equations. Nonlinear Dyn. 57, 363–373 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Balochian, S., Sedigh, A.K., Haeri, M.: Stabilization of fractional order systems using a finite number of state feedback laws. Nonlinear Dyn. 66, 141–152 (2011)

    Article  MathSciNet  Google Scholar 

  27. Hamamci, S.E.: Stabilization using fractional-order PI and PID controllers. Nonlinear Dyn. 51, 329–343 (2008)

    Article  MATH  Google Scholar 

  28. Odibat, Z.M.: Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dyn. 60, 479–487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hu, J., Han, Y., Zhao, L.: Synchronizing chaotic systems using control based on a special matrix structure and extending to fractional chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 15, 115–123 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Peng, G.: Synchronization of fractional order chaotic systems. Phys. Lett. A 363, 426–432 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, J.-W., Zhang, Y.-B.: Synchronization in coupled nonidentical incommensurate fractional-order systems. Phys. Lett. A 374, 202–207 (2009)

    Article  MATH  Google Scholar 

  32. Pan, L., Zhou, W., Fang, J., Li, D.: Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 15, 3754–3762 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Asheghan, M.M., Beheshti, M.T.H., Tavazoei, M.S.: Comments on “Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control” [Commun. Nonlinear Sci. Numer. Simul. 15, 3754–3762 (2010)]. Commun. Nonlinear Sci. Numer. Simul. 16, 2656–2657 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lu, J.G.: Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal. Physica A 359, 107–118 (2006)

    Article  Google Scholar 

  35. Zhong, Q.-S., Bao, J.-F., Yu, Y.-B., Liao, X.-F.: Impulsive control for fractional-order chaotic systems. Chin. Phys. Lett. 25, 2812 (2008)

    Article  Google Scholar 

  36. Lin, T.-C., Kuo, C.-H.: H synchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach. ISA Trans. 50, 548–556 (2011)

    Article  Google Scholar 

  37. Aghababa, M.P.: Comments on “H synchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach” [ISA Trans 50, 548–556 (2011)]. ISA Trans. (2011). doi:10.1016/j.isatra.2011.10.011

    Google Scholar 

  38. Wu, X., Lu, H., Shen, S.: Synchronization of a new fractional-order hyperchaotic system. Phys. Lett. A 373, 2329–2337 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bhalekar, S., Daftardar-Gejji, V.: Synchronization of different fractional order chaotic systems using active control. Commun. Nonlinear Sci. Numer. Simul. 15, 3536–3546 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Song, L., Yang, J., Xu, S.: Chaos synchronization for a class of nonlinear oscillators with fractional order. Nonlinear Anal. 72, 2326–2336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pan, L., Zhou, W., Zhou, L.G., Sun, K.: Chaos synchronization between two different fractional-order hyperchaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16, 2628–2640 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387, 57–70 (2008)

    Article  MathSciNet  Google Scholar 

  43. Hosseinnia, S.H., Ghaderi, R., Ranjbar, A., Mahmoudian, M., Momani, S.: Sliding mode synchronization of an uncertain fractional order chaotic system. Comput. Math. Appl. 59, 1637–1643 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yin, C., Zhong, S.-M., Chen, W.-F.: Design of sliding mode controller for a class of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17, 356–366 (2012)

    Article  MathSciNet  Google Scholar 

  45. Chen, D.-Y., Liu, Y.-X., Ma, X.-Y., Zhang, R.-F.: Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0002-x

    Google Scholar 

  46. Zhang, R., Yang, S.: Adaptive synchronization of fractional-order chaotic systems via a single driving variable. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-9944-2

    Google Scholar 

  47. Aghababa, M.P.: Comments on “Design of sliding mode controller for a class of fractional-order chaotic systems” [Commun. Nonlinear Sci. Numer. Simul. 17, 356–366 (2012)]. Commun. Nonlinear Sci. Numer. Simul. 17, 1485–1488 (2012)

    Article  MathSciNet  Google Scholar 

  48. Aghababa, M.P.: Comments on “Adaptive synchronization of fractional-order chaotic systems via a single driving variable” [Nonlinear Dyn. (2011). doi:10.1007/s11071-011-9944-2]. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0216-y

    Google Scholar 

  49. Aghababa, M.P.: Comments on “Control of a class of fractional-order chaotic systems via sliding mode” [Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0002-x]. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0218-9

    Google Scholar 

  50. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  51. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MATH  Google Scholar 

  52. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Utkin, V.I.: Sliding Modes in Control Optimization. Springer, Berlin (1992)

    MATH  Google Scholar 

  55. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  56. Yu, X., Man, Z.: Multi-input uncertain linear systems with terminal sliding-mode control. Automatica 34, 389–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yu, X., Man, Z.: Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49, 261–264 (2002)

    Article  MathSciNet  Google Scholar 

  58. Ge, Z.-M., Jhuang, W.-R.: Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor. Chaos Solitons Fractals 33, 270–289 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Pourmahmood Aghababa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghababa, M.P. Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn 69, 247–261 (2012). https://doi.org/10.1007/s11071-011-0261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0261-6

Keywords

Navigation