Skip to main content
Log in

Fast projective synchronization of fractional order chaotic and reverse chaotic systems with its application to an affine cipher using date of birth (DOB)

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a fractional order dynamical system is constructed that exhibits chaotic and reverse chaotic attractors by changing the sign of the one parameter which involves in the existence of the phase reversal function. A new method of fast projective synchronization of fractional order dynamical systems is introduced. An affine cipher is proposed for secure communication based on the solutions of the synchronized fractional order chaotic systems with the support of the sender’s and receiver’s date of birth. The efficiency and security of an affine cipher are analyzed. Numerical simulations are demonstrated to show the feasibility of the presented theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. El-Shahed, M.: MHD of a fractional viscoelastic fluid in a circular tube. Mech. Res. Commun. 33, 261–268 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Jesus, I.S., Machado, J.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54, 263–282 (2008)

    Article  MATH  Google Scholar 

  3. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Synchronization of a novel fractional order stretch-twist-fold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES). Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1398-x

  4. Diethelm, K.: A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. 71, 613–619 (2013)

    Article  MathSciNet  Google Scholar 

  5. Flores-Tlacuahuac, A., Biegler, L.T.: Optimization of fractional order dynamic chemical processing systems. Ind. Eng. Chem. Res. 53, 5110–5127 (2014)

    Article  Google Scholar 

  6. Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003)

    Article  Google Scholar 

  7. Li, C., Chen, G.: Chaos and hyperchaos in the fractional-order R\(\ddot{o}\)ssler equations. Phys. A 341, 55–61 (2004)

    Article  MathSciNet  Google Scholar 

  8. Lu, J.G.: Chaotic dynamics of the fractional-order L\(\ddot{u}\) system and its synchronization. Phys. Lett. A 354, 305–311 (2006)

    Article  Google Scholar 

  9. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Abdullah, A.: Synchronization and secure communication of uncertain chaotic systems based on full-order and reduced-order output-affine observers. Appl. Math. Comput. 219, 10000–10011 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Muthukumar, P., Balasubramaniam, P.: Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dyn. 74, 1169–1181 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Teng, L., Iu, H.H., Wang, X., Wang, X.: Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dyn. 77, 231–241 (2014)

    Article  Google Scholar 

  13. Li, R., Chen, W.: Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems. Nonlinear Dyn. 76, 785–795 (2014)

    Article  Google Scholar 

  14. Chen, L., He, Y., Chai, Y., Wu, R.: New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dyn. 75, 633–641 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wang, Z., Yang, D., Ma, T., Sun, N.: Stability analysis for nonlinear fractional-order systems based on comparison principle. Nonlinear Dyn. 75, 387–402 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Agrawal, S.K., Das, S.: A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters. Nonlinear Dyn. 73, 907–919 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Odibat, Z.: A note on phase synchronization in coupled chaotic fractional order systems. Nonlinear Anal. Real World Appl. 13, 779–789 (2012)

  18. Matouk, A.E., Elsadany, A.A.: Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique. Appl. Math. Lett. 29, 30–35 (2014)

    Article  MathSciNet  Google Scholar 

  19. Jin-Gui, L.: A novel study on the impulsive synchronization of fractional-order chaotic systems. Chin. Phys. B 22, 060510 (2013)

    Article  Google Scholar 

  20. Zhang, R., Yang, S.: Robust synchronization of two different fractional-order chaotic systems with unknown parameters using adaptive sliding mode approach. Nonlinear Dyn. 71, 269–278 (2013)

    Article  Google Scholar 

  21. Sha, W., Yong-Guang, Y., Hu, W., Rahmani, A.: Function projective lag synchronization of fractional-order chaotic systems. Chin. Phys. B 23, 040502 (2014)

    Article  Google Scholar 

  22. Liu, L., Liang, D., Liu, C.: Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system. Nonlinear Dyn. 69, 1929–1939 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wu, X., Wang, H.: A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn. 61, 407–417 (2010)

    Article  MATH  Google Scholar 

  24. Wu, X., Wang, H., Lu, H.: Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication. Nonlinear Anal. Real World Appl. 13, 1441–1450 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chee, C.Y., Xu, D.: Secure digital communication using controlled projective synchronisation of chaos. Chaos Solitons Fractals 23, 1063–1070 (2005)

    Article  MATH  Google Scholar 

  26. Li, C., Li, H., Tong, Y.: Analysis of a novel three-dimensional chaotic system. Optik 124, 1516–1522 (2013)

    Article  Google Scholar 

  27. Li, C., Su, K., Wu, L.: Adaptive sliding mode control for synchronization of a fractional-order chaotic system. J. Comput. Nonlinear Dyn. 8, 031005 (2013)

    Article  Google Scholar 

  28. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13, 529–539 (1967)

    Article  Google Scholar 

  29. Matignon, D.: Stability results for fractional differential equations with applications to control processing. Proceedings of Computational engineering in systems applications 2, 963–968 (1996)

    Google Scholar 

  30. Tavazoei, M.S., Haeri, M.: A necessary condition for double scroll attractor existence in fractional-order systems. Phys. Lett. A 367, 102–113 (2007)

    Article  MATH  Google Scholar 

  31. Hoffstein, J., Pipher, J., Silverman, J.H.: An Introduction to Mathematical Cryptography. Springer, New York (2008)

    MATH  Google Scholar 

  32. Sparrow, C.: The Lorenz equations: bifurcations, chaos, and strange attractors. Springer, New York (1982)

    Book  MATH  Google Scholar 

  33. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifur. Chaos 9, 1465–1466 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Chen, H.K., Lee, C.I.: Anti-control of chaos in rigid body motion. Chaos Solitons Fractals 21, 957–965 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the University Grants Commission-Basic Science Research (UGC-BSR), Grant No: F.7-73/2007 (BSR), Government of India, New Delhi. It is also supported by the Project No: UM.C/625/1/HIR/MOHE/13, University of Malaya, Malaysia. The authors are very much thankful to the editors and anonymous reviewers for their careful reading, constructive comments and fruitful suggestions to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Balasubramaniam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukumar, P., Balasubramaniam, P. & Ratnavelu, K. Fast projective synchronization of fractional order chaotic and reverse chaotic systems with its application to an affine cipher using date of birth (DOB). Nonlinear Dyn 80, 1883–1897 (2015). https://doi.org/10.1007/s11071-014-1583-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1583-y

Keywords

Navigation