Skip to main content
Log in

Chaotic behavior in fractional-order horizontal platform systems and its suppression using a fractional finite-time control strategy

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The present paper investigates the dynamical properties of a non-autonomous fractional-order horizontal platform system (FOHPS). According to different parameter settings, we show that the FOHPS can possess stable, chaotic and unstable states. Using the maximal Lyapunov exponent criterion, we show that the FOHPS exhibits chaos. Strange attractors of the system are also plotted to validate chaotic behavior of the system. Since the chaotic behavior of the FOHPS may be undesirable, a fractional finite-time controller is introduced to suppress the chaos of the FOHPS with model uncertainties and external disturbances in a given finite time. We use the fractional Lyapunov theory to prove the finite time stability and robustness of the proposed scheme. Finally, computer simulations are given to illustrate the efficiency and applicability of the proposed fractional control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Podlubny, Fractional differential equations, Academic Press, New York, USA (1999).

    MATH  Google Scholar 

  2. W. Zhang, Dynamic behaviors of nonlinear fractional-order differential oscillator, The Journal of Mechanical Science and Technology, 23 (2009) 1058–1064.

    Article  Google Scholar 

  3. M. P. Aghababa, Chaos in a fractional-order micro-electromechanical resonator and its suppression, Chinese Physics B, 21 (2012) 100505.

    Article  Google Scholar 

  4. M. P. Aghababa and H. P. Aghababa, The rich dynamics of fractional-order gyros applying a fractional controller, Proceedings of Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 227 (2013) 588–601.

    Google Scholar 

  5. M. P. Aghababa, Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller, Communications in Nonlinear Science and Numerical Simulation, 17 (2012) 2670–2681.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. P. Aghababa, Finite-time chaos control and synchronization of fractional-order chaotic (hyperchaotic) systems via fractional nonsingular terminal sliding mode technique, Nonlinear Dynamics, 69 (2012) 247–261.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. P. Aghababa, Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory, ASME Journal on Computational and Nonlinear Dynamics, 7 (2012) 0210101.

    Google Scholar 

  8. M. P. Aghababa, A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems, Nonlinear Dynamics, 73 (2013) 679–688.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. P. Aghababa, Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems, International Journal of Control, 86 (2013) 1744–1756.

    Article  MathSciNet  Google Scholar 

  10. M. P. Aghababa, No-chatter variable structure control for fractional nonlinear complex systems, Nonlinear Dynamics, 73 (2013) 2329–2342.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. P. Aghababa, A fractional-order controller for vibration suppression of uncertain structures, ISA Transactions, 52 (2013) 881–887.

    Article  Google Scholar 

  12. S. K. A. Shah, A. S. Fallah and L. A. Louca, On the chaotic dynamic response of deterministic nonlinear single and multi-degree-of-freedom systems, The Journal of Mechanical Science and Technology, 26 (2012) 1697–1709.

    Article  Google Scholar 

  13. M. Ataei, A. A. Atai, S. Mirjavadi, M. Sahebnasagh and M. Nikkhah-Bahrami, Application of impulse damper in control of a chaotic friction-induced vibration, The Journal of Mechanical Science and Technology, 25 (2011) 279–285.

    Article  Google Scholar 

  14. M. P. Aghababa and H. P. Aghababa, Chaos synchronization of gyroscopes using an adaptive robust finite-time controller, The Journal of Mechanical Science and Technology, 27 (2013) 909–916.

    Article  Google Scholar 

  15. S. Yim, Design of a robust controller for rollover prevention with active suspension and differential braking, The Journal of Mechanical Science and Technology, 26 (2012) 213–222.

    Article  Google Scholar 

  16. S. I. Han, C. S. Jeong and S. Y. Yang, Robust sliding mode control for uncertain servo system using friction observer and recurrent fuzzy neural networks, The Journal of Mechanical Science and Technology, 26 (2012) 1149–1159.

    Article  Google Scholar 

  17. S. Kang, W. Kim, H. J. Kim and J. Park, Adaptive feedforward control of ionic polymer metal composites with disturbance cancellation, The Journal of Mechanical Science and Technology, 26 (2012) 205–212.

    Article  Google Scholar 

  18. H. C. Cho, Lyapunov theory based robust control of complicated nonlinear mechanical systems with uncertainty, The Journal of Mechanical Science and Technology, 22 (2008) 2142–2150.

    Article  Google Scholar 

  19. T. D. Viet, P. T. Doan, H. Giang, H. K. Kim and S. B. Kim, Control of a 2-DOF omnidirectional mobile inverted pendulum, The Journal of Mechanical Science and Technology, 26 (2012) 2921–2928, 2012.

    Article  Google Scholar 

  20. M. Zareh and S. Soheili, A modified model reference adaptive control with application to MEMS gyroscope, The Journal of Mechanical Science and Technology, 25 (2011) 2061–2066.

    Article  Google Scholar 

  21. Z. M. Ge, T. C. Yu and Y. S. Chen, Chaos synchronization of a horizontal platform system, Journal of Sound and Vibration, 268 (2003) 731–749.

    Article  Google Scholar 

  22. X. Wu, J. Cai and M. Wang, Master-slave chaos synchronization criteria for the horizontal platform systems via linear state error feedback control, Journal of Sound and Vibration, 295 (2006) 378–387.

    Article  MATH  MathSciNet  Google Scholar 

  23. X. Wu, J. Cai and M. Wang, Robust synchronization of chaotic horizontal platform systems with phase difference, Journal of Sound and Vibration, 305 (2007) 481–491.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Cai, X. Wu and S. Chen, Chaos synchronization criteria and costs of sinusoidally coupled horizontal platform systems, Mathematical Problems in Engineering, (2007) 86852.

    Google Scholar 

  25. N. S. Pai and H. T. Yau, Generalized projective synchronization for the horizontal platform systems via an integraltype sliding mode control, Journal of Vibration and Control, 17 (2011) 11–17.

    Article  MATH  MathSciNet  Google Scholar 

  26. N. S. Pai and H. T. Yau, Suppression of chaotic behavior in horizontal platform systems based on an adaptive sliding mode control scheme, Communications in Nonlinear Science and Numerical Simulation, 16 (2011) 133–143.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. P. Aghababa and H. P. Aghababa, Synchronization of mechanical horizontal platform systems in finite time, Applied Mathematical Modelling, 36 (2012) 4579–4591.

    Article  MATH  MathSciNet  Google Scholar 

  28. Y. Li, Y. Q. Chen and I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009) 1965–1969.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. T. Rosenstein, J. J. Collins and C. J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets, Physica D, 65 (1993) 117–134.

    Article  MATH  MathSciNet  Google Scholar 

  30. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, UK (1952).

    MATH  Google Scholar 

  31. T. Binazadeh and M. H. Shafiei, Output tracking of uncertain fractional-order nonlinear systems via a novel fractional-order sliding mode approach, Mechatronics, 23 (2013) 888–892.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Pourmahmood Aghababa.

Additional information

Recommended by Associate Editor Cong Wang

Mohammad Pourmahmood Aghababa received his Ph.D. in Control Engineering from the University of Tabriz in 2011. He is currently an Assistant Professor in the Department of Electrical Engineering of the Urmia University of Technology, Urmia, Iran. His research interests include nonlinear control and fractional calculus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghababa, M.P. Chaotic behavior in fractional-order horizontal platform systems and its suppression using a fractional finite-time control strategy. J Mech Sci Technol 28, 1875–1880 (2014). https://doi.org/10.1007/s12206-014-0334-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0334-9

Keywords

Navigation