Skip to main content
Log in

The role of noise in a predator–prey model with Allee effect

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The existence and implications of alternative stable states in ecological systems have been investigated extensively within deterministic models. However, it is known that natural systems are undeniably subject to random fluctuations, arising from either environmental variability or internal effects. Thus, in this paper, we study the role of noise on the pattern formation of a spatial predator–prey model with Allee effect. The obtained results show that the spatially extended system exhibits rich dynamic behavior. More specifically, the stationary pattern can be induced to be a stable target wave when the noise intensity is small. As the noise intensity is increased, patchy invasion emerges. These results indicate that the dynamic behavior of predator–prey models may be partly due to stochastic factors instead of deterministic factors, which may also help us to understand the effects arising from the undeniable susceptibility to random fluctuations of real ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  ADS  Google Scholar 

  2. Haken, H.: Synergetics. An Introduction, Springer Series in Synergetics, vol. 1. Springer, Berlin (1977)

    Google Scholar 

  3. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York (1977)

    MATH  Google Scholar 

  4. Weidlich, W., Haag, G.: Concepts and Models of a Quantitative Sociology. The Dynamics of Interacting Populations, Springer Series in Synergetics. Springer, Berlin (1983)

    MATH  Google Scholar 

  5. Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.-L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44(3), 311–370 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. J. Theor. Biol. 245, 220–229 (2007)

    Article  MathSciNet  Google Scholar 

  7. Sun, G.Q., Jin, Z., Liu, Q.X., Li, L.: Pattern formation induced by cross-diffusion in a predator–prey system. Chin. Phys. B 17, 3936–3941 (2008)

    Article  ADS  Google Scholar 

  8. Sun, G.Q., Jin, Z., Liu, Q.X., Li, L.: Dynamical complexity of a spatial predator–prey model with migration. Ecol. Model. 219, 248–255 (2008)

    Article  Google Scholar 

  9. Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    MATH  Google Scholar 

  10. Holling, C.S.: Resilience and stability of ecological systems. Ann. Rev. Ecolog. Syst. 4, 1–23 (1973)

    Article  Google Scholar 

  11. Folke, C., Carpenter, S.R., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L.H., Holling, C.: Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004)

    Article  Google Scholar 

  12. Scheffer, M., Rinaldi, S., Kuznetsov, Y.A., van Nes, E.H.: Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system. Oikos 80, 519–532 (1997)

    Article  Google Scholar 

  13. Scheffer, M., Rinaldi, S.: Minimal models of top-down control of phytoplankton. Freshw. Biol. 45, 265–283 (2000)

    Article  Google Scholar 

  14. Guttal, V., Jayaprakash, C.: Impact of noise on bistable ecological systems. Ecol. Model. 201, 420–428 (2007)

    Article  Google Scholar 

  15. Vilar, J.G., Solé, R.V.: Effects of noise in symmetric two-species competition. Phys. Rev. Lett. 80(18), 4099–4102 (1998)

    Article  ADS  Google Scholar 

  16. Mankin, R., Laas, T., Sauga, A., Ainsaar, A.: Colored-noise-induced Hopf bifurcations in predator-prey communities. Phys. Rev. E 74, 021101 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Mankin, R., Laas, T., Soika, E., Ainsaar, A.: Noise-controlled slow–fast oscillations in predator–prey models with the Beddington functional response. Eur. Phys. J. B 59, 1434–6036 (2007)

    Article  Google Scholar 

  18. Rai, R., Singh, H.: Stochastic resonance without an external periodic drive in a simple prey–predator model. Phys. Rev. E 62, 8804–8807 (2000)

    Article  ADS  Google Scholar 

  19. Lai, Y.-C.: Beneficial role of noise in promoting species diversity through stochastic resonance. Phys. Rev. E 72, 042901 (2005)

    Article  ADS  Google Scholar 

  20. Barbera, A.L., Spagnolo, B.: Spatio-temporal patterns in population dynamics. Phys. A 314, 120–124 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Spagnolo, B., Cirone, M., Barbera, A.L., de Pasquale, F.: Noise-induced effects in population dynamics. J. Phys. Condens. Matter 14, 2247–2255 (2002)

    Article  ADS  Google Scholar 

  22. Vilar, J.M.G., Solé, R.V., Rubí, J.M.: On the origin of plankton patchiness. Phys. A 317, 239–246 (2003)

    Article  MathSciNet  Google Scholar 

  23. Kortlüke, O., Kuzovkov, V.N., von Niessen, W.: Internal spatiotemporal stochastic resonance in the presence of weak noise. Phys. Rev. E 66, 036139 (2002)

    Article  ADS  Google Scholar 

  24. Sun, G.Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator–prey system. Nonlinear Dyn. (2009, in press)

  25. Sun, G.Q., Jin, Z., Zhao, Y.G., Liu Q.X., Li, L.: Spatial pattern in a predator-prey system with both self- and cross-diffusion. Int. J. Mod. Phys. C (2009, in press)

  26. Allee, W.C.: The Social Life of Animals. Norton, New York (1938)

    Google Scholar 

  27. Dennis, B.: Allee effects: population growth, critical density, and the chance of extinction. Nat. Res. Model. 3, 481–538 (1989)

    MATH  MathSciNet  Google Scholar 

  28. Amarasekare, P.: Interactions between local dynamics and dispersal: insights from single species models. Theor. Popul. Biol. 53, 44–59 (1998)

    Article  MATH  Google Scholar 

  29. Gyllenberg, M., Hemminki, J., Tammaru, T.: Allee effects can both conserve and create spatial heterogeneity in population densities. Theor. Popul. Biol. 56, 231–242 (1999)

    Article  MATH  Google Scholar 

  30. Petrovskii, S.V., Vinogradov, M.E., Morozov, A.Y.: Spatio-temporal horizontal plankton patterns caused by biological invasion in a two-species model of plankton dynamics allowing for the Allee effect. Oceanology 42, 384–393 (2002)

    Google Scholar 

  31. Nisbet, R.M., Gurney, W.S.C.: Modelling Fluctuating Populations. Wiley, Chichester (1982)

    MATH  Google Scholar 

  32. Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R.: Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 17–29 (1994)

    Article  Google Scholar 

  33. Sherratt, J.A.: Periodic travelling waves in cyclic predator-prey systems. Ecol. Lett. 4, 30–37 (2001)

    Article  Google Scholar 

  34. Segel, L.A., Jackson, J.L.: Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37, 545–559 (1972)

    Article  Google Scholar 

  35. Morozov, A., Petrovskii, S., Li, B.-L.: Bifurcations and chaos in a predator–prey system with the Allee effect. Proc. R. Soc. Lond. B 271, 1407–1414 (2004)

    Article  Google Scholar 

  36. Lewis, M.A., Kareiva, P.: Allee dynamics and the spread of invading organisms. Theor. Popul. Biol. 43, 141–158 (1993)

    Article  MATH  Google Scholar 

  37. Petrovskii, S.V., Morozov, A.Y., Venturino, E.: Allee effect makes possible patchy invasion in a predator–prey system. Ecol. Lett. 5, 345–352 (2002)

    Article  Google Scholar 

  38. Sun, G., Jin, Z., Liu, Q.-X., Li, L.: Pattern formation in a spatial s-i model with non-linear incidence rates. J. Stat. Mech. 11, P11011 (2007)

    Article  Google Scholar 

  39. Reichenbach, T, Mobilia, M, Frey, E.: Noise and correlations in a spatial population model with cyclic competition. Phys. Rev. Lett. 99, 238105 (2007)

    Article  ADS  Google Scholar 

  40. Reichenbach, T., Mobilia, M., Frey, E.: Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games. Nature 448, 1046 (2007)

    Article  ADS  Google Scholar 

  41. Liu, Q., Li, B., Jin, Z.: Resonance and frequency-locking phenomena in a spatially extended phytoplankton–zooplankton system with additive noise and periodic forces. J. Stat. Mech. P05011 (2008)

  42. Blasius, B., Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399, 354 (1999)

    Article  ADS  Google Scholar 

  43. Mankin, R., et al.: Trichotomous-noise-induced catastrophic shifts in symbiotic ecosystems. Phys. Rev. E 65, 051108 (2002)

    Article  ADS  Google Scholar 

  44. Mankin, R., et al.: Colored-noise-induced discontinuous transitions in symbiotic ecosystems. Phys. Rev. E 69, 061106 (2004)

    Article  ADS  Google Scholar 

  45. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43 525 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  46. Pascual, M.: Diffusion-induced chaos in a spatial predator- prey system. Proc. R. Soc. B 251, 1–7 (1993)

    Article  ADS  Google Scholar 

  47. Sherratt, J.A., Lewis, M.A., Fowler, A.C.: Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. U. S. A. 92, 2524–2528 (1995)

    Article  MATH  ADS  Google Scholar 

  48. Petrovskii, S., Li, B-L., Malchow, H.: Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex. 1, 37 (2004)

    Article  Google Scholar 

  49. Wilson, W.G.: Resolving discrepancies between deterministic population models and individual-based simulations. Am. Nat. 151, 116 (1998)

    Article  Google Scholar 

  50. Morozov, A., Petrovskii, S., Li, B.L.: Spatiotemporal complexity of patchy invasion in a predator–prey system with the Allee effect. J. Theor. Biol. 238, 18–35 (2006)

    Article  MathSciNet  Google Scholar 

  51. Petrovskii, S.V., Morozov, A.Y., Li, B.-L.: Regimes of biological invasion in a predator–prey system with the Allee effect. Bull. Math. Biol. 67, 637–661 (2005)

    Article  MathSciNet  Google Scholar 

  52. Sherratt, J.A., Lambin, X., Sherratt, T.N.: The effects of the size and shape of landscape features on the formation of traveling waves in cyclic populations. Am. Nat. 162, 503–513 (2003)

    Article  Google Scholar 

  53. Ovaskainen, O., Sato, K., Bascompte, J., Hanski, I.: Metapopulation models for extinction threshold in spatially correlated landscapes. J. Theor. Biol. 215, 95–108 (2002)

    Article  Google Scholar 

  54. Bascompte, J., Rodríguez, M.A.: Self-disturbance as a source of spatiotemporal heterogeneity: the case of the Tallgrass Prairie. J. Theor. Biol. 204, 153–164 (2000)

    Article  Google Scholar 

  55. Bascompte, J., Solé R.V.: Effects of habitat destruction in a prey–predator metapopulation model. J. Theor. Biol. 195, 383–393 (1998)

    Article  Google Scholar 

  56. Neufeld, Z., et al.: Excitable media in open and closed chaotic flows. Phys. Rev. E 66, 066208 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  57. Zhou, C., et al.: Noise-sustained coherent oscillation of excitable media in a chaotic flow. Phys. Rev. Lett. 91, 150601 (2003)

    Article  ADS  Google Scholar 

  58. Hernandez-Garcia, E., Lopez, C.: Sustained plankton blooms under open chaotic flows. Ecol. Complex 1, 253 (2004)

    Article  Google Scholar 

  59. Neufeld, Z., et al.: Ocean fertilization experiments may initiate a large scale phytoplankton bloom. Geophys. Res. Lett. 29, 1534 (2002)

    Article  ADS  Google Scholar 

  60. Hernandez-Garcia, E., Lopez, C., Neufeld, Z.: Small-scale structure of nonlinearly interacting species advected by chaotic flows. Chaos 12, 470 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. Tzella, A., Haynes, P.H.: Small-scale spatial structure in plankton distributions. Biogeosciences 4, 173 (2007)

    Article  ADS  Google Scholar 

  62. Reigada, R., et al.: Plankton blooms induced by turbulent flows. Proc. R. Soc. B 270, 875 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 60771026, Program for New Century Excellent Talents in University (NCET050271), the Natural Science Foundation of Shan’Xi Province Grant No. 2006011009, the Special Scientific Research Foundation for the Subjects of Doctors in University (20060110005), and Graduate Students’ Excellent Innovative Item of Shanxi Province No. 20081018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Jin.

Appendix: More detail about noise term η(r, t)

Appendix: More detail about noise term η(r, t)

The Ornstein–Uhlenbeck process obeys the following stochastic partial differential equation:

$$ \frac{\partial \eta(r,t)}{\partial t}=-\frac{1}{\tau}\eta(r,t)+\frac{1}{\tau}\xi(r,t), \label{tur1} $$
(10)

where ξ(r,t) is a Gaussian white noise with zero mean and correlation,

$$ \langle \xi(r,t) \rangle=0, $$
(11a)
$$ \left\langle \xi(r,t)\xi\left(r',t'\right) \right\rangle=2\varepsilon \delta \left(r-r'\right)\delta \left(t-t'\right). $$
(11b)

As a result, the colored noise η(r,t), which is temporally correlated and white in space, satisfies

$$ \left\langle \eta(r,t)\eta\left(r',t'\right) \right\rangle=\frac{\varepsilon}{\tau}\exp\left(-\frac{|t-t'|}{\tau}\right)\delta\left(r-r'\right), $$
(12)

where τ controls the temporal correlation, and ε measures the noise intensity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, GQ., Jin, Z., Li, L. et al. The role of noise in a predator–prey model with Allee effect. J Biol Phys 35, 185–196 (2009). https://doi.org/10.1007/s10867-009-9139-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9139-y

Keywords

Navigation