Skip to main content
Log in

Self-organized wave pattern in a predator-prey model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, pattern formation of a predator-prey model with spatial effect is investigated. We obtain the conditions for Hopf bifurcation and Turing bifurcation by mathematical analysis. When the values of the parameters can ensure a stable limit cycle of the no-spatial model, our study shows that the spatially extended models have spiral waves dynamics. Moreover, the stability of the spiral wave is given by the theory of essential spectrum. Furthermore, although the environment is heterogeneous, the system still exhibit spiral waves. The obtained results confirm that diffusion can form the population in the stable motion, which well enrich the finding of spatiotemporal dynamics in the predator-prey interactions and may well explain the field observed in some areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol. 245, 220–229 (2007)

    Article  MathSciNet  Google Scholar 

  2. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Dynamical complexity of a spatial predator-prey model with migration. Ecol. Model. 219, 248–255 (2008)

    Article  Google Scholar 

  3. MacArthur, R.H.: Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599–619 (1958)

    Article  Google Scholar 

  4. Malchow, H.: Motional instabilities in predator-prey systems. J. Theor. Biol. 204, 639–647 (2000)

    Article  Google Scholar 

  5. Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.-L.: Spatio-temporal complexity of plankton and fish dynamics in simple model ecosystems. SIAM Rev. 44, 311–370 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Pattern formation induced by cross-diffusion in a predator-prey system. Chin. Phys. B 17, 3936–3941 (2009)

    Google Scholar 

  7. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, New York (2003)

    MATH  Google Scholar 

  8. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  Google Scholar 

  9. Segel, L., Jackson, J.: Dissipative structure: An explanation and an ecological example. J. Theor. Biol. 37, 545–559 (1972)

    Article  Google Scholar 

  10. Neubert, M., Caswell, H., Murray, J.: Transient dynamics and pattern formation: Reactivity is necessary for Turing instabilities. J. Theor. Biol. 175, 1–11 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Garvie, M.R.: Finite-difference schemes for reaction–diffusion equations modeling predator-prey interactions in Matlab. Bull. Math. Biol. 69, 931–956 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Morozov, A., Ruan, S., Li, B.L.: Patterns of patchy spread in multi-species reaction–diffusion models. Ecol. Complex. 5, 313–328 (2008)

    Article  Google Scholar 

  13. Petrovskii, S., Blackshaw, R., Li, B.L.: Consequences of the Allee effect and intraspecific competition on population persistence under adverse environmental conditions. Bull. Math. Biol. 70, 412–437 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Morozov, A., Li, B.L.: On the importance of dimensionality of space in models of space-mediated population persistence. Theor. Popul. Biol. 71, 278–289 (2007)

    Article  MATH  Google Scholar 

  15. Morozov, A., Li, B.L.: Parametric analysis of a predator-prey system stabilized by a top predator. J. Math. Biol. 53, 305–335 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Morozov, A., Petrovskii, S., Li, B.L.: Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. J. Theor. Biol. 238, 18–35 (2006)

    Article  MathSciNet  Google Scholar 

  17. Petrovskii, S., Morozov, A., Li, B.L.: Regimes of biological invasion in a predator-prey system with the Allee effect. Bull. Math. Biol. 67, 637–661 (2005)

    Article  MathSciNet  Google Scholar 

  18. Morozov, A., Petrovskii, S., Li, B.L.: Bifurcations and chaos in a predator-prey system with the Allee effect. Proc. R. Soc. Lond. B 271, 1407–1414 (2004)

    Article  Google Scholar 

  19. Petrovskii, S., Li, B.L., Malchow, H.: Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex. 1, 37–47 (2004)

    Article  Google Scholar 

  20. Petrovskii, S., Li, B.L., Malchow, H.: Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems. Bull. Math. Biol. 65, 425–446 (2003)

    Article  Google Scholar 

  21. Petrovskii, S.V., Li, B.L.: Increased coupling between subpopulations in a spatially structured environment can lead to population outbreaks. J. Theor. Biol. 212, 549–562 (2001)

    Article  Google Scholar 

  22. Arditi, R., Saiah, H.: Empirical evidence of the role of heterogeneity in ratio-dependent consumption. Ecology 73, 1544–1551 (1992)

    Article  Google Scholar 

  23. Arditi, R., Ginzburg, L.R., Akcakaya, H.R.: Variation in plankton densities among lakes: A case for ratio-dependent models. Am. Nat. 138, 1287–1296 (1991)

    Article  Google Scholar 

  24. Arditi, R., Perrin, N., Saiah, H.: Functional response and heterogeneities: An experiment test with cladocerans. Oikos 60, 69–75 (1991)

    Article  Google Scholar 

  25. Gutierrez, A.P.: The physiological basis of ratio-dependent predator-prey theory: A methbolic pool model of Nicholson’s blowflies as an example. Ecology 73, 1552–1563 (1992)

    Article  Google Scholar 

  26. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. Dekker, New York (1980)

    MATH  Google Scholar 

  27. Chaudhuri, K.: Dynamic optimization of combined harvesting of a two species fishery. Ecol. Model. 41, 17–25 (1988)

    Article  Google Scholar 

  28. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Chaos induced by breakup of waves in a spatial epidemic model with nonlinear incidence rate. J. Stat. Mech. 08, P08011 (2008)

    Article  Google Scholar 

  29. Sun, G., Jin, Z., Liu, Q.-X., Li, L.: Pattern formation in a spatial s-i model with non-linear incidence rates. J. Stat. Mech. 11, P11011 (2007)

    Article  Google Scholar 

  30. Castets, V., Dulos, E., Boissonade, J., Kepper, P.D.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Ecol. Model. 64, 2953–2956 (1990)

    Google Scholar 

  31. Aragón, J.L., Torres, M., Gil, D., Barrio, R.A., Maini, P.K.: Turing patterns with pentagonal symmetry. Phys. Rev. E 65, 051913 (2002)

    Article  MathSciNet  Google Scholar 

  32. Sherratt, J.A., Lambin, X., Thomas, C.J., Sherratt, T.N.: Generation of periodic waves by landscape features in cyclic predator-prey systems. Proc. R. Soc. Lond. B 269, 327–334 (2002)

    Article  Google Scholar 

  33. Sandstede, B., Scheel, A.: Absolute versus convective instability of spiral waves. Phys. Rev. E 62(6), 7708–7714 (2000)

    Article  MathSciNet  Google Scholar 

  34. Sandstede, B., Scheel, A.: Curvature effects on spiral spectra: Generation of point eigenvalues near branch points. Phys. Rev. E 73, 016217 (2006)

    Article  MathSciNet  Google Scholar 

  35. Rademacher, Jens D.M., Sandstede, B., Scheel, A.: Computing absolute and essential spectra using continuation. Physics D 229, 166–183 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wheeler, P., Barkley, D.: Computation of spiral spectra. SIAM J. Appl. Dyn. Syst. 5, 157–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sandstede, B., Scheel, A.: Absolute and convective instabilities of waves on unbounded and large bound domains. Physics D 145, 233–277 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Barkley, D.: Linear stability analysis of rotating spiral waves in excitable media. Phys. Rev. Lett. 68(13), 2090–2093 (1992)

    Article  Google Scholar 

  39. Barkley, D.: Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72(1), 164–167 (1994)

    Article  Google Scholar 

  40. Aranson, I., Kramer, L., Weber, A.: Core instability and spatiotemporal intermittency of spiral waves in oscillatory media. Phys. Rev. Lett. 72(15), 2316–2319 (1994)

    Article  Google Scholar 

  41. Morozov, A., Petrovskii, S., Li, B.-L.: Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. J. Theor. Biol. 238, 18–35 (2006)

    Article  MathSciNet  Google Scholar 

  42. Sherratt, J.A., Lambin, X., Sherratt, T.N.: The effects of the size and shape of landscape features on the formation of traveling waves in cyclic populations. Am. Nat. 162, 503–513 (2003)

    Article  Google Scholar 

  43. Petrovskii, S., Malchow, H., Li, B.-L.: An exact solution of a diffusive predator-prey system. Proc. R. Soc. A 461, 1029–1053 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, GQ., Jin, Z., Li, L. et al. Self-organized wave pattern in a predator-prey model. Nonlinear Dyn 60, 265–275 (2010). https://doi.org/10.1007/s11071-009-9594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9594-9

Keywords

Navigation