Skip to main content

Advertisement

Log in

Analysis of different atmospheric physical parameterizations in COAWST modeling system for the Tropical Storm Nock-ten application

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A coupled ocean–atmosphere–wave–sediment transport modeling system was applied to study the atmosphere and ocean dynamics during Tropical Storm Nock-ten. Different atmospheric physical parameterizations in WRF model were investigated through ten groups of numerical experiments. Results of atmosphere, ocean wave and current features were compared with storm observations, ERA-Interim data, NOAA sea surface temperature data, AVISO current data and HYCOM data, respectively. It was found that the storm track and intensity are sensitive to the cumulus and radiation schemes in WRF, especially around the storm center area. As a result, using Kain–Fritsch cumulus scheme, Goddard shortwave radiation scheme and RRTM longwave radiation scheme in WRF may lead to much larger wind intensity, significant wave height, current intensity, as well as lower SST and sea surface pressure. Thus, they are not recommended for this study. Ocean parameters such as significant wave height, SST and current speed are more sensitive to Single-Moment 6-class microphysics scheme than to Eta microphysics scheme at the storm center. By analyzing modeled data with JASON-2 altimeter data, ERA-Interim data and HYCOM data in terms of fitting coefficient, root-mean-square error, correlation coefficient and model performance, the recommended atmospheric physical parameterization in this coupled system, have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aldrian E, Sein DV, Jacob D, Gates LD, Podzun R (2005) Modeling Indonesian rainfall with a coupled regional model. Clim Dyn 25:1–17

    Article  Google Scholar 

  • Awan NK, Truhetz H, Gobiet A (2011) Parameterization-induced error characteristics of MM5 and WRF operated in climate mode over the Alpine region: an ensemble-based analysis. J Clim 24:3107–3123

    Article  Google Scholar 

  • Bender MA, Ginis I (2000) Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: effects on hurricane intensity. Mon Weather Rev 128:917–946

    Article  Google Scholar 

  • Bender MA, Ginis I, Tuleya R, Thomas B, Marchok T (2007) The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon Weather Rev 135:3965–3989

    Article  Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions, part I. Model description and validation. J Geophys Res 104:7649–7666

    Article  Google Scholar 

  • Borge R, Alexandrov V, del Vas JJ, Lumbreras J, Rodríguez E (2008) A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos Environ 42:8560–8574. doi:10.1016/j.atmosenv.2008.08.032

    Article  Google Scholar 

  • Bukovsky MS, Karoly DJ (2009) A Regional modeling study of climate change impacts on warm-season precipitation in the Central United States. J Clim 24:1985–2002

    Article  Google Scholar 

  • Chassignet EP, Arango HG, Dietrich D, Ezer T, Ghil M, Haidvogel DB, Ma C-C, Mehra A, Paiva AM, Sirkes Z (2000) DAMEE-NAB: the base experiments. Dyn Atmos Oceans 32:155–183

    Article  Google Scholar 

  • Chen SS, Price JF, Zhao W, Donelan MA, Walsh EJ (2007) The CBLAST hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and predictions. Bull Am Meteorol Soc 88:311–317

    Article  Google Scholar 

  • Chou M, Suarez MJ, Ho C, Yan MM, Lee K (1998) Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J Clim 11:202–214

    Article  Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B (2004) Description of the NCAR Community Atmosphere Model (CAM3.0). NCAR tech note NCAR/TN-464 + STR, pp 214

  • Dudhia J (1996) A multi-layer soil temperature model for MM5. In: Sixth annual PSU/UCAR mesoscale model users’ workshop

  • Evans JP, Ekström M, Ji F (2011) Evaluating the performance of a WRF physics ensemble over South-East Australia. Clim Dyn 39:1241–1258. doi:10.1007/s00382-011-1244-5

    Article  Google Scholar 

  • Fan Y, Ginis I, Hara T (2009) The effect of wind–wave–current interaction on air–sea momentum fluxes and ocean response in tropical cyclones. J Phys Oceanogr 39:1019–1034. doi:10.1175/2008JPO4066.1

    Article  Google Scholar 

  • Fels SB, Schwarzkopf MD (1981) An efficient accurate algorithm for calculating CO2 15um band cooling rates. J Geophys Res 86:1205–1232

    Article  Google Scholar 

  • Flather RA (1976) A tidal model of the north-west European continental shelf. Memoires Societe Royale des Sciences de Liege, 6e serie, tome X, pp 141–164

  • Fovell RG, Corbosiero KL, Kuo H-C (2010) Influence of cloud-radiative feedback on tropical cyclone motion: Symmetric contributions. In: 29th conference on hurricanes and tropical meteorology, American Meteorological Society

  • Hagedorn R, Lehmann A, Jacob D (1990) A coupled high resolution atmosphere–ocean model for the BALTEX region. Meteorol Z 9:7–20

    Google Scholar 

  • Haidvogel DB, Arango HG, Hedstrom K, Beckmann A, Malanotte-Rizzoli P, Shchepetkin AF (2000) Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dyn Atmos Oceans 32:239–281

    Article  Google Scholar 

  • Haidvogel DB, Arango H, Budgell WP, Cornuelle BD et al (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. J Comput Phys 227:3595–3624

    Article  Google Scholar 

  • Hong S, Lim JJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42:129–151

    Google Scholar 

  • Janjic ZI (1994) The step-mountain eta coordinate model: further development of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Janjic ZI (1996) The surface layer in the NCEP Eta model. In: Eleventh conference on numerical weather prediction, Norfolk, pp 19–23. Am Meteorol Soc 354–355

  • Janjic ZI (2000) Comments on “Development and Evaluation of a Convection Scheme for Use in Climate Models”. J Atmos Sci 57:3686

    Article  Google Scholar 

  • Janjic ZI (2002) Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437: 61

  • Jankov I, Schultz P, Anderson C, Koch S (2007) The impact of different physical parameterizations and their interactions on cold season QPF in the American River basin. J Hydrometeorol 8:1141–1151

    Article  Google Scholar 

  • Janssen PAEM (1989) Wave induced stress and the drag of air flow over sea waves. J Phys Oceanogr 19:745–754

    Article  Google Scholar 

  • Janssen D, Schuck P (1991) On some aspects of selfconsistent RPA theory. Zeitschrift für Physik A Hadrons and Nuclei 339:43–50

    Article  Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO:2

    Article  Google Scholar 

  • Kala J, Andrys J, Lyons TJ, Foster IJ, Evans BJ (2015) Sensitivity of WRF to driving data and physics options on a seasonal time-scale for the southwest of Western Australia. Clim Dyn 44:633–659. doi:10.1007/s00382-014-2160-2

    Article  Google Scholar 

  • Kanase RD, Salvekar PS (2015) Effect of physical parameterization schemes on track and intensity of cyclone LAILA using WRF model. Asia-Pac J Atmos Sci 51:205–227. doi:10.1007/s13143-015-0071-8

    Article  Google Scholar 

  • Lee C-Y, Chen SS (2014) Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon Weather Rev 142:1927–1944. doi:10.1175/MWR-D-13-00122.1

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682. doi:10.1029/97JD00237

    Article  Google Scholar 

  • Nasrollahi N, AghaKouchak A, Li J, Gao X, Hsu K, Sorooshian S (2012) Assessing the impacts of different WRF precipitation physics in Hurricane simulations. Weather Forecast 27:1003–1016

    Article  Google Scholar 

  • Nelson J, He R (2012) Effect of the Gulf stream on winter extratropical cyclone outbreaks. Atmos Sci Lett 13:311–316. doi:10.1002/asl.400

    Article  Google Scholar 

  • Olabarrieta M, Warner JC, Armstrong B, He R, Zambon JB (2012) Ocean–atmosphere dynamics during Hurricane Ida and Nor’Ida: an application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model 43–44:112–137. doi:10.1029/2011JC007387

    Article  Google Scholar 

  • Raju PVS, Potty J, Mohanty UC (2011) Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model. Meteorol Atmos Phys 113:125–137

    Article  Google Scholar 

  • Ren X, Perrie W, Long Z, Gyakum J, McTaggart-Cowan R (2004) On the atmosphere–ocean coupled dynamics of cyclones in midlatitudes. Mon Weather Rev 132:2432–2451

    Article  Google Scholar 

  • Rogers E, Black T, Ferrier B, Lin Y, Parrish D, DiMego G (2001) Changes to the NCEP Meso Eta Analysis and Forecast System: increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/

  • Schrum C, Hübner U, Jacob D, Podzun R (2003) A coupled atmosphere/ice/ocean model for the North Sea and Baltic Sea. Clim Dyn 21:131–141

    Article  Google Scholar 

  • Seo H, Miller AJ, Roads JO (2007) The scripps coupled ocean–atmosphere regional (SCOAR) model, with applications in the eastern Pacific sector. J Clim 20:381–402

    Article  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The regional ocean modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinates ocean model. Ocean Modell 9:347–404

    Article  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2009) Correction and commentary for ‘‘Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system’’ by Haidvogel et al., J Comput Phys 227: 3595–3624. J Comput Phys 228: 8985–9000

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A Description of the advanced research WRF version 2. NCAR Tech Note NCAR/TN-468 + STR

  • Srinivas D, Bhaskar Rao DV (2014) Implications of vortex initialization and model spin-up in tropical cyclone prediction using Advanced Research Weather Research and Forecasting Model. Nat Hazards 73:1043–1062

    Article  Google Scholar 

  • Wada A, Cronin MF, Sutton AJ et al (2013) Numerical simulations of oceanic pCO2 variations and interactions between Typhoon Choiwan (0914) and the ocean. J Geophys Res Oceans 118:2667–2684. doi:10.1002/jgrc.20203

    Article  Google Scholar 

  • Warner JC, Sherwood CR, Signell RP, Harris CK, Arango HG (2008a) Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput Geosci 34:1284–1306

    Article  Google Scholar 

  • Warner JC, Perlin N, Skyllingstad ED (2008b) Using the model coupling toolkit to couple earth system models. Environ Model Softw 23:1240–1249

    Article  Google Scholar 

  • Warner JC, Armstrong B, He R, Zambon J (2010) Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Modell 35:230–244

    Article  Google Scholar 

  • Willmott CJ (1981) On validation of models. Phys Geogr 2:184–194

    Google Scholar 

  • Yao Y, Perrie W, Zhang W, Jiang J (2008) The characteristics of atmosphere–ocean interactions along North Atlantic extratropical storms tracks. J Geophys Res 113:D14124. doi:10.1029/2007JD008854

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by National Program for Basic Study of China (No. 2010CB950404) and National 863 Program of China (No. 2013AA09A506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danqin Ren.

Appendix

Appendix

Statistical analysis methods are applied to compare simulated data (X n ) with observations (M n ) quantitatively. Root-mean-square error (RMSE) is defined by

$${\text{RMSE}} = \left[ {\frac{1}{N}\mathop \sum \limits_{n = 1}^{N} \left( {X_{n} - M_{n} } \right)^{2} } \right]$$
(1)

The correlation coefficient (R) is given by

$$R = \frac{{\sum\limits_{n = 1}^{N} {\left( {X_{n} - \overline{{X_{n} }} } \right)\left( {M_{n} - \overline{{M_{n} }} } \right)} }}{{\sqrt {\sum\limits_{n = 1}^{N} {\left( {X_{n} - \overline{{X_{n} }} } \right)^{2} } \cdot \sum\limits_{n = 1}^{N} {\left( {M_{n} - \overline{{M_{n} }} } \right)^{2} } } }}$$
(2)

The formulation explained for the model performance (Willmott 1981) is as follows

$$S = 1 - \frac{{\sum\limits_{n = 1}^{N} {\left( {X_{n} - M_{n} } \right)^{2} } }}{{\sum\limits_{n = 1}^{N} {\left[ {\left( {X_{n} - \overline{{M_{n} }} } \right)^{2} + \left( {M_{n} - \overline{{M_{n} }} } \right)^{2} } \right]} }}$$
(3)

where \(\overline{{X_{n} }}\) and \(\overline{{M_{n} }}\) are the mean value of X n and M n . Both R and S range from 0 (bad) to 1 (good).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, D., Du, J., Hua, F. et al. Analysis of different atmospheric physical parameterizations in COAWST modeling system for the Tropical Storm Nock-ten application. Nat Hazards 82, 903–920 (2016). https://doi.org/10.1007/s11069-016-2225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2225-0

Keywords

Navigation