Skip to main content
Log in

Numerical Simulation of an Extremely Severe Cyclonic Storm Hudhud over the North Indian Ocean in a Medium Range Scale: Influence of Cloud Microphysical Schemes

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

One of the most challenging tasks in atmospheric modeling is accurate spatio-temporal forecasting of extremely severe cyclonic storms (ESCSs). This study critically examined the numerical simulation of ESCS Hudhud, which formed over the North Indian Ocean basin in October 2014 on a medium-range (7-day) scale using six different cloud microphysical schemes of the Weather Research and Forecasting model. NCEP PREBUFR observation was used to improve the initial condition using a three-dimensional variational data assimilation system. A 7-day simulated track, intensity, and rapid intensification of ESCS were validated against the India Meteorological Department best-fit track observations. The least track error was about 42 km, 67 km, 87 km, and 192 km from Day 4 to Day 7 by using the Goddard Microphysical Scheme (MPS). Mean track error for 7 days was about 129 km, followed by the Lin MPS (~ 136 km) and WSM6 MPS (~ 139 km). The least mean absolute error in maximum surface winds is ~ 4 m/s using the Goddard, Lin, and WSM19 MPSs with a correlation coefficient > 0.93. Probability of detection for rapid intensification/dissipation was about 70% using WSM6 and Goddard MPSs, which was relatively better compared to other MPSs. Results clearly demonstrate that latent heating between 500 and 200 hPa was very important and contributed to intensification, and the maximum magnitude of latent heating correlated well with MSW of ESCS. Simulated maximum reflectivity was compared with the Doppler Weather Radar (DWR) observation from Visakhapatnam, and results indicate that reflectivity is well represented. However, the magnitude was slightly under-predicted compared to DWR in the Goddard MPS. The vertical distribution of hydrometeors and microphysical latent heating is found to play an important role in the initiation and development of cyclonic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albert, J., & Bhaskaran, P. K. (2020). Optimal grid resolution for the detection lead time of cyclogenesis in the North Indian Ocean. Journal of Atmospheric and Solar-Terrestrial Physics. https://doi.org/10.1016/j.jastp.2020.105289.

    Article  Google Scholar 

  • Aligo, E. A., Gallus, W. A., Jr., & Segal, M. (2009). On the impact of WRF model vertical grid resolution on Midwest summer rainfall forecasts. Weather and Forecasting, 24(2), 575–594.

    Article  Google Scholar 

  • Bhaskaran, P. K., Gayathri, R., Murty, P. L. N., Subba Reddy, B., & Sen, D. (2013a). A numerical study of coastal inundation and its validation for Thane Cyclone in the Bay of Bengal. Coastal Engineering, 83, 108–118. https://doi.org/10.1016/j.coastaleng.2013.10.005.

    Article  Google Scholar 

  • Bhaskaran, P. K., Kalra, R., Dube, S. K., Sinha, P. C., Rao, A. D., Kumar, Raj, et al. (2000). Extreme wave conditions over the Bay of Bengal during a severe cyclone—Simulation experiment with two spectral wave models. Marine Geodesy, 23(2), 91–102. https://doi.org/10.1080/01490410050030661.

    Article  Google Scholar 

  • Bhaskaran, P. K., Nayak, S., Subba Reddy, B., Murty, P. L. N., & Sen, D. (2013b). Performance and validation of a coupled parallel ADCIRC-SWAN model for THANE cyclone in the Bay of Bengal. Environmental Fluid Mechanics, 13, 601–623. https://doi.org/10.1007/s10652-013-9284-5.

    Article  Google Scholar 

  • Campbell, J. D., Taylor, M. A., Stephenson, T. S., Watson, R. A., & Whyte, F. S. (2011). Future climate of the Caribbean from a regional climate model. International J Climatology, 31(12), 1866–1878.

    Article  Google Scholar 

  • Chen, S. H. (2007). The impact of assimilating SSM/I and QuikSCAT satellite winds on Hurricane Isidore simulation. Monthly Weather Review, 135, 549–566.

    Article  Google Scholar 

  • Choudhury, D., & Das, S. (2017a). The sensitivity to the microphysical schemes on the skill of forecasting the track and intensity of tropical cyclones using WRF-ARW model. Journal of Earth System Science, 126(4), 57.

    Article  Google Scholar 

  • Choudhury, D., & Das, S. (2017b). The sensitivity to the microphysical schemes on the skill of forecasting the track and intensity of tropical cyclones using WRF-ARW model. J Earth System Science, 126(4), 57. https://doi.org/10.1007/s12040-017-0830-2.

    Article  Google Scholar 

  • Chutia, L., Pathak, B., Parottil, A., & Bhuyan, P. K. (2019). Impact of microphysics parameterizations and horizontal resolutions on simulation of “MORA” tropical cyclone over Bay of Bengal using Numerical Weather Prediction Model. Meteorology and Atmospheric Physics, 131(5), 1483–1495.

    Article  Google Scholar 

  • Das, M. K., Chowdhury, M., & Das, S. (2015). Sensitivity Study with physical parameterization schemes for simulation of mesoscale convective systems associated with squall events. International Journal of Earth Atmospheric Science, 2(2), 20–36.

    Google Scholar 

  • Denis, B., Laprise, R., Caya, D., & Cote, J. (2002). Downscaling ability of one-way nested regional climate models: the big-brother experiment. Climate Dynamics, 18, 627–646.

    Article  Google Scholar 

  • Deshpande, M., Pattnaik, S., & Salvekar, P. S. (2010). Impact of physical parameterization schemes on numerical simulation of super cyclone Gonu. Natural Hazards, 55(2), 211–231.

    Article  Google Scholar 

  • Douluri, D. L., & Annapurnaiah, K. (2016). Impact of microphysics schemes in the simulation of cyclone hudhud using WRF-ARW model. International J Oceans and Oceanography, 10(1), 49–59.

    Google Scholar 

  • Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46, 3077–3107.

    Article  Google Scholar 

  • Elsberry, R. L. (2007). Advances in tropical cyclone motion prediction and recommendations for the future. Bulletin of the World Meteorological Organization, 56(2), 131–134.

    Google Scholar 

  • Elsberry, R. L. (2014). Advances in research and forecasting of tropical cyclones from 1963–2013. Asia-Pacific Journal of Atmospheric Sciences, 50, 3–16. https://doi.org/10.1007/s13143-014-0001-1.

    Article  Google Scholar 

  • Halder, M., & Mukhopadhyay, P. (2016). Microphysical processes and hydrometeor distributions associated with thunderstorms over India: WRF (cloud-resolving) simulations and validations using TRMM. Natural Hazards, 83(2), 1125–1155.

    Article  Google Scholar 

  • Hong, S. Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9), 2318–2341.

    Article  Google Scholar 

  • Jolliffe, I. T., & Stephenson, D. B. (2012). Forecast verification: a practitioner’s guide in atmospheric science. Oxford: Wiley.

    Google Scholar 

  • Kanase, R. D., & Salvekar, P. S. (2015). Effect of physical parameterization schemes on track and intensity of cyclone LAILA using WRF model. Asia-Pacific Journal of Atmospheric Sciences, 51(3), 205–227.

    Article  Google Scholar 

  • Kimball, S. K., & Dougherty, F. C. (2006). The sensitivity of idealized hurricane structure and development to the distribution of vertical levels in MM5. Monthly Weather Review, 134(7), 1987–2008.

    Article  Google Scholar 

  • Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., et al. (2010). Tropical cyclones and climate change. Nature Geoscience, 3, 157–163.

    Article  Google Scholar 

  • Lin, Y. L., Farley, R. D., & Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. J Climate and Applied Meteorology, 22(6), 1065–1092.

    Article  Google Scholar 

  • Mansell, E. R., Cziegler, L., & Bruning, E. C. (2010). Simulated electrification of a small thunderstorm with two-moment bulk microphysics. Journal of Atmospheric Science, 67, 171–194.

    Article  Google Scholar 

  • Maw, K. W., & Min, J. (2017). Impacts of microphysics schemes and topography on the prediction of the heavy rainfall in Western Myanmar associated with tropical cyclone ROANU (2016). Advances in Meteorology. https://doi.org/10.1155/2017/3252503.

    Article  Google Scholar 

  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102, 16663–16682.

    Article  Google Scholar 

  • Morrison, H., Curry, J. A., & Khvorostyanov, V. I. (2005). A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. Journal of Atmospheric Sciences, 62(6), 1665–1677.

    Article  Google Scholar 

  • Morrison, H., Thompson, G., & Tatarskii, V. (2009). Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Monthly Weather Review, 137(3), 991–1007.

    Article  Google Scholar 

  • Murakami, H., Vecchi, G. A., & Underwood, S. (2017). Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nature Climate Change, 7(12), 885–889.

    Article  Google Scholar 

  • Murty, P. L. N., Bhaskaran, P. K., Gayathri, R., Sahoo, B., Kumar, T. S., & Subba Reddy, B. (2016). Numerical study of coastal hydrodynamics using a coupled model for Hudhud cyclone in the Bay of Bengal, Estuarine. Coastal and Shelf Science, 183, 13–27.

    Article  Google Scholar 

  • Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al. (2011). The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research. https://doi.org/10.1029/2010JD015139.

    Article  Google Scholar 

  • Osuri, K. K., Mohanty, U. C., Routray, A., & Niyogi, D. (2015). Improved prediction of Bay of Bengal tropical cyclones through assimilation of Doppler weather radar observations. Monthly Weather Review. https://doi.org/10.1175/mwr-d-13-00381.1.

    Article  Google Scholar 

  • Pan, H.L., & Wu, W.-S. (1995). Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. NMC Office Note, No. 409, pp. 40.

  • Pu, Z., Li, X., & Zipser, E. J. (2009). Diagnosis of the initial and forecast errors in the numerical simulation of the rapid intensification of Hurricane Emily (2005). Weather Forecasting, 24, 1236–1251.

    Article  Google Scholar 

  • Rappaport, E. N., Franklin, J. L., Avila, L. A., Baig, S. R., Beven, J. L., Blake, E. S., et al. (2009). Advances and challenges at the National Hurricane Center. Weather and Forecasting, 24, 395–419.

    Article  Google Scholar 

  • Sahoo, B., & Bhaskaran, P. K. (2019). Prediction of storm surge and inundation using climatological datasets for the Indian coast using soft computing techniques. Soft Computing, 23, 12363–12383. https://doi.org/10.1007/s00500-019-03775-0.

    Article  Google Scholar 

  • Sahoo, B., Bhaskaran, P. K., & Pradhan, A. K. (2018). Application of weather forecasting model WRF for operational electric power network management—A case study for Phailin cyclone. Theoretical and Applied Climatology, 137, 871–891. https://doi.org/10.1007/s00704-018-2639-6.

    Article  Google Scholar 

  • Saikumar, P. J., & Ramashri, T. (2017). Impact of physics parameterization schemes in the simulation of Laila cyclone using the advanced mesoscale weather research and forecasting model. International Journal of Applied Engineering Research, 12(22), 12645–12651.

    Google Scholar 

  • Sandeep, C. P. R., Krishnamoorthy, C., & Balaji, C. (2018). Impact of cloud parameterization schemes on the simulation of cyclone Vardah using the WRF model. Current Science, 115(6), 1143–1153.

    Article  Google Scholar 

  • Singh, K. S., & Bhaskaran, P. K. (2018). Impact of lateral boundary and initial conditions in prediction of Bay of Bengal cyclones using WRF model and its 3D-Var data assimilation system. J Atmospheric and Solar-Terrestrial Physics, 175(10), 64–75.

    Article  Google Scholar 

  • Singh, K. S., & Mandal, M. (2014). Sensitivity of mesoscale simulation of Aila cyclone to the parameterization of physical processes using WRF model. In Monitoring and prediction of tropical cyclones in the Indian Ocean and climate change, pp. 300–308.

  • Singh, K. S., Mandal, M., & Bhaskaran, P. K. (2019). Impact of radiance data assimilation on the prediction performance of cyclonic storm SIDR using WRF-3DVAR modelling system. Meteorology and Atmospheric Physics, 131(1), 11–28.

    Article  Google Scholar 

  • Sirisha, P., Remya, P. G., Nair, T. B., & Rao, B. V. (2015). Numerical simulation and observations of very severe cyclone generated surface wave fields in the north Indian Ocean. Journal of Earth System Science, 124(8), 1639–1651.

    Article  Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2005), A description of the advanced research WRF version 2 (No. NCAR/TN-468 + STR). National Center for Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div.

  • Srinivas, C. V., Bhaskar Rao, D. V., Yesubabu, V., Baskaran, R., & Venkatraman, B. (2013). Tropical cyclone predictions over the Bay of Bengal using the high-resolution Advanced Research Weather Research and Forecasting (ARW) model. Quarterly Journal of the Royal Meteorological Society, 139, 1810–1825.

    Article  Google Scholar 

  • Tao, W. K., Shi, J. J., Chen, S. S., Lang, S., Lin, P. L., Hong, S. Y., et al. (2011). The impact of microphysical schemes on hurricane intensity and track. Asia-Pacific J Atmospheric Sciences, 47(1), 1–16.

    Article  Google Scholar 

  • Tao, W. K., Simpson, J., Baker, D., Braun, S., Chou, M. D., Ferrier, B., et al. (2003). Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorology and Atmospheric Physics, 82(1), 97–137.

    Article  Google Scholar 

  • Tao, W. K., Simpson, J., & McCumber, M. (1989). An ice-water saturation adjustment. Monthly Weather Review, 117(1), 231–235.

    Article  Google Scholar 

  • Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D. (2008). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Monthly Weather Review, 136(12), 5095–5115.

    Article  Google Scholar 

  • Yamaguchi, M., Vitart, F., Lang, S. T., Magnusson, L., Elsberry, R. L., Elliott, G., et al. (2015). Global distribution of the skill of tropical cyclone activity forecasts on short- to medium-range time scales. Weather and Forecasting, 30, 1695–1709.

    Article  Google Scholar 

  • Zhang, D. L., & Wang, X. (2003). Dependence of hurricane intensity and structures on vertical resolution and time-step size. Advances in Atmosphere Sciences, 20(5), 711. https://doi.org/10.1007/BF02915397.

    Article  Google Scholar 

  • Zhang, F., Weng, Y., Gamache, J. F., & Marks, F. D. (2011). Performance of convection permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner core airborne doppler radar observations. Geophysics Research Letters. https://doi.org/10.1029/2011gl048469.

    Article  Google Scholar 

  • Zhang, S., Harrison, M. J., Rosati, A., & Wittenberg, A. (2007). System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Monthly Weather Review, 135, 3541–3564.

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the India Meteorological Department (IMD) for providing the observations, ECMRWF for providing the analysis data sets, and NCAR for the WRF model and its data assimilation system. K.S. Singh acknowledges the Department of Science and Technology—Science and Engineering Research Board (DST-SERB), Government of India, for funding the research project (File Sanction no.—ECR/2018/001185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad K. Bhaskaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.S., Alam, P., Albert, J. et al. Numerical Simulation of an Extremely Severe Cyclonic Storm Hudhud over the North Indian Ocean in a Medium Range Scale: Influence of Cloud Microphysical Schemes. Pure Appl. Geophys. 177, 5895–5910 (2020). https://doi.org/10.1007/s00024-020-02596-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02596-9

Keywords

Navigation