Skip to main content
Log in

Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Comprehensive sensitivity analyses on physical parameterization schemes of Weather Research Forecast (WRF-ARW core) model have been carried out for the prediction of track and intensity of tropical cyclones by taking the example of cyclone Nargis, which formed over the Bay of Bengal and hit Myanmar on 02 May 2008, causing widespread damages in terms of human and economic losses. The model performances are also evaluated with different initial conditions of 12 h intervals starting from the cyclogenesis to the near landfall time. The initial and boundary conditions for all the model simulations are drawn from the global operational analysis and forecast products of National Center for Environmental Prediction (NCEP-GFS) available for the public at 1° lon/lat resolution. The results of the sensitivity analyses indicate that a combination of non-local parabolic type exchange coefficient PBL scheme of Yonsei University (YSU), deep and shallow convection scheme with mass flux approach for cumulus parameterization (Kain-Fritsch), and NCEP operational cloud microphysics scheme with diagnostic mixed phase processes (Ferrier), predicts better track and intensity as compared against the Joint Typhoon Warning Center (JTWC) estimates. Further, the final choice of the physical parameterization schemes selected from the above sensitivity experiments is used for model integration with different initial conditions. The results reveal that the cyclone track, intensity and time of landfall are well simulated by the model with an average intensity error of about 8 hPa, maximum wind error of 12 m s−1and track error of 77 km. The simulations also show that the landfall time error and intensity error are decreasing with delayed initial condition, suggesting that the model forecast is more dependable when the cyclone approaches the coast. The distribution and intensity of rainfall are also well simulated by the model and comparable with the TRMM estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bengtsson L (2001) Hurricane threats. Science 293:440–441

    Article  Google Scholar 

  • Betts AK (1986) A new convective adjustment scheme. Part I: observational and theoretical basis. Quart J Roy Meteor Soc 112:677–691

    Google Scholar 

  • Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart J Roy Meteor Soc 112:693–709

    Google Scholar 

  • Braun SA, Tao WK (2000) Sensitivity of high resolution simulations of hurricane Bob (1991) to the planetary boundary layer parameterization. Mon Weather Rev 128:3941–3961

    Article  Google Scholar 

  • Chang HI, Kumar A, Niyogi D, Mohanty UC, Chen F, Dudhia J (2009) The role of land surface processes on the mesoscale simulation of the July 26, 2005 heavy rain event over Mumbai, India, Global Planet. Change. doi:10.1016/j.gloplacha.2008.12.005

  • Cheng WYY, Steenbyrgh WJ (2005) Evaluation of surface sensible weather forecasts by WRF and ETA models over the Western United States. Weather Forecast 20:812–821

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3177

    Article  Google Scholar 

  • Dudhia J (2004) The weather research and forecasting model (version 2.0) 2nd international workshop on next generation NWP model. Yonsei University Seoul, Korea, pp 19–23

  • Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  Google Scholar 

  • Fovell RG, Su H (2007) Impact of cloud microphysics on hurricane track forecast. Geophy Res Lett 34:L24810. doi:10.1029/2007/GL031723

    Article  Google Scholar 

  • Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophy Res Lett 29(14):1693–1697

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeor 8(1):38–55

    Article  Google Scholar 

  • Indian Meteorological Department (2008) A preliminary report on Cyclone season of 2008

  • Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sub layer and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain–Fritsch scheme. In: Emanual KA, Raymond DJ (eds) The representation of cumulus convection in numerical models, Am Meteor Soc, 246 pp

  • Mandal M, Mohanty UC, Raman S (2004) A study of impact of parameterization of physical processes on prediction of tropical cyclone over the Bay of Bengal with NCAR/PSU mesoscale model (MM5). Nat Hazard 31:391–414

    Article  Google Scholar 

  • Michalakes J, Dudhia J, Gill DO, Henderson T, Klemp J, Skamarock W, Wand W (2005) The weather research and forecast model: software architecture and performance. In: 11th workshop on high performance computing in meteorology, World Scientific, pp 156–168

  • Mohanty UC, Mandal M, Raman S (2003) Simulation of Orissa super cyclone (1999) using PSU/NCAR mesoscale model. Nat Hazard 31:373–390

    Article  Google Scholar 

  • Neumann CJ (1993) Global guide to tropical cyclone forecasting. WMO/TC-No. 560, Report No. TCP-31, World Meteorological Organization; Geneva, Switzerland

  • Rao DVB, Prasad DH (2007) Sensitivity of tropical cyclone intensification to boundary layer and convective processes. Nat Hazard 41(3):429–445

    Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split non-hydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF Version 2. NCAR Technical Note TN-468+ST, 88 pp

  • Sousounis PJ, Hutchinson TA, Marshall, SF (2004) A comparison of MM5, WRF, RUC, ETA performance for great plains heavy precipitation event during the spring of 2003. In: 20th conference on weather analysis and forecasting, Seattle, Am Meteor Soc vol J24.6

  • Sujatha P, Mohanty UC (2008) A Comparative study on prediction of MM5 and WRF models in simulation of tropical cyclones over Indian seas. Curr Sci 95(7):923–936

    Google Scholar 

  • Tenerelli JE, Chen SS (2001) High resolution simulation of hurricane Floyd (1999) using MM5 with vertex following mesh refinements, Preprint, 18th conference on weather analysis and forecasting/14th conference on numerical weather prediction 30 July–2 August Ft-Lauderdale, Florida, AMS, pp J54–J56

  • Webster PJ (2008) Myanmar’s deadly daffodil. Nat Geosci. doi:10.1038/ngeo257

Download references

Acknowledgments

The authors sincerely acknowledge NCEP for providing the global analysis and forecast fields, NASA for precipitation data, the track and intensity were furnished by JTWC. The authors also expresses their thanks to the two anonymous reviewers for their valuable comments for the improving the quality of the manuscript. Danish International Development Agency (DANIDA) provided financial support for computational resources to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. S. Raju.

Additional information

Responsible editor: F. Mesinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raju, P.V.S., Potty, J. & Mohanty, U.C. Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model. Meteorol Atmos Phys 113, 125–137 (2011). https://doi.org/10.1007/s00703-011-0151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-011-0151-y

Keywords

Navigation