Skip to main content

Advertisement

Log in

Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The central part of Rethymnon Prefecture, Crete Island, suffers from severe landslide phenomena because of its geological and geomorphological settings alternated by the human activities. The main landslide preparatory and triggering causal factors are considered to be the ground conditions (lithology), geomorphological processes (fluvial erosion, etc.), and the man-made actions (excavations, loading etc.). The purpose of this study is to develop a decision support and continuous monitoring system of the area by composing landslide hazard and risk maps. For that reason, several approaches of the weighted linear combination (WLC), a semi-quantitative hazard analysis method, were adopted in a Geographic Information Systems (GIS) environment. The results were validated using a pre-existing landslide database enriched with new landslide locations mapped through image interpretation of a processed IKONOS satellite image. The validation results showed that the WLC method coupled with remote sensing (RS) and GIS techniques can support engineering geological studies concerning landslide vulnerability of hazardous areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44. doi:10.1007/s100640050066

    Article  Google Scholar 

  • Anbalagan D (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277. doi:10.1016/0013-7952(92)90053-2

    Article  Google Scholar 

  • Atkinson PM, Massari R (1998) Generalized linear modeling of landslide susceptibility in the central Apennines, Italy. Comput Geosci 24:373–385. doi:10.1016/S0098-3004(97)00117-9

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, Central Japan. Geomorphology 65:15–31. doi:10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004a) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81. doi:10.1007/s10346-003-0006-9

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Watanabe N, Marui H (2004b) Landslide susceptibility mapping using a semi-quantitative approach, a case study from Kakuda-Yahiko Mountains, Niigata, Japan. In: Free M, Aydin A (eds) Proceedings of the 4th asian symposium on engineering geology and the environment, Geological Society of Hong Kong, vol 7. pp 99–105

  • Barredo JI, Benavides A, Hervas J, van Westen CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int J Appl Earth Obs Geoinf 2:9–23. doi:10.1016/S0303-2434(00)85022-9

    Article  Google Scholar 

  • Bonneau M (1973) Les différentes “séries ophiolitiferes” de la Crète: une mise au point. CR Acad Sci (D) 276:1249–1252

    Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: Proceedings of the fourth international symposium on landslides, vol 1. Canadian Geotechnical Society, Toronto, pp 307–324

  • Caniani D, Pascale S, Sdao F, Sole A (2008) Neural networks and landslide susceptibility: a case study of the urban area of Potenza. Nat Hazards 45:55–72. doi:10.1007/s11069-007-9169-3

    Article  Google Scholar 

  • Carrara A, Cardinalli M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazard. Kluwer, London, pp 173–175

    Google Scholar 

  • Carrara A, Guzzetti F, Cardinali M, Reichenbach P (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Nat Hazards 20:117–135. doi:10.1023/A:1008097111310

    Article  Google Scholar 

  • Castellanos Abella EA, van Westen CJ (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantanamo. Cuba Geomorphol 94(3–4):453–466

    Article  Google Scholar 

  • Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44(8):949–962. doi:10.1007/s00254-003-0838-6

    Article  Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364. doi:10.1016/S0169-555X(02)00079-X

    Article  Google Scholar 

  • Creutzburg N (1977) General geological map of Greece (Crete Island). 1:200.000. IGRM, Athens

    Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87. doi:10.1016/S0013-7952(01)00093-X

    Article  Google Scholar 

  • De Roo APJ (1993) Modeling surface runoff and soil erosion in catchments using geographic information systems: validity and applicability of the "ANSWERS" model in two catchments in the loess area of South Limburg (The Netherlands) and one in Devon (UK). Netherlands Geographical studies, 157, University of Utrecht, Utrecht, p 304

  • Dikau R, Cavallin A, Jager S (1996) Databases and GIS for landslide research in Europe. Geomorphology 15(3–4):227–239. doi:10.1016/0169-555X(95)00072-D

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75(3–4):229–250. doi:10.1016/j.enggeo.2004.06.001

    Article  Google Scholar 

  • Evans NC, Huang SW, King JP (1997) The natural terrain landslide study—phases I and II. Special project report SPR5/97, Geotechnical Engineering Office, Hong Kong

  • Fall M (2000) Standsicherheitsanalyse der Küstenhänge in Cap Manuel (Dakar, Senegal) mit Hilfe ingenieurgeologisch-geotechnischer Untersuchungen und GIS-technologischer Methoden, vol 2000–2002. Veröffentlichung Institut Geotechnik, Heft, p 187

    Google Scholar 

  • Fall M, Azzam R (2001a) Ingenieurgeologische und numerische Standsicherheitsanalysen der Basaltkliffe in Dakar. Int J Felsbau 19(1):51–57

    Google Scholar 

  • Fall M, Azzam R (2001b) An example of multi-disciplinary approach to landslide assessment in coastal area. International conference on landslide, proceedings international conference on landslides: causes impacts and countermeasures, Glückauf Verlag, Davos, pp 45–54

  • Fall M, Dia A, Fall M, Gbaguidi I, Lo PG, Diop IN (1996) Un cas d’instabilité de pente naturelle: le versant des Madeleines—Presqu’île de Dakar (Sénégal): analyse, Cartographie des risques et prévention. Bull Eng Geol Environ 53:29–38. doi:10.1007/BF02594938

    Google Scholar 

  • Fall M, Azam R, Noubactep C (2006) A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Eng Geol 82(4):241–263. doi:10.1016/j.enggeo.2005.11.007

    Article  Google Scholar 

  • Fell R, Walker B, Finlay P (1996) Estimating the probability of landsliding. In: Proceedings of the 7th Australia–New Zealand conference on geomechanics, Institute of Engineers, Adelaide, pp 304–311

  • Fitroulakis N (1980) The geological structure of Crete Island. Problems—observations—conclusions. PhD thesis, Technical University of Athens, Athens

  • Fourniadis IG, Liu JG, Mason PJ (2007) Landslide hazard assessment in the three gorges area, China, using ASTER imagery: Wushan–Badong. Geomorphology 84:126–144. doi:10.1016/j.geomorph.2006.07.020

    Article  Google Scholar 

  • Gray DH, Leiser AT (1982) Biotechnical slope protection and erosion control. Van Nostrand Reinhold, New York

    Google Scholar 

  • Greenway DR (1987) Vegetation and slope stability. In: Anderson MG, Richards KS (eds) Slope stability. Wiley, New York, pp 187–230

    Google Scholar 

  • Guzetti F, Carrarra A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multiscale study, Central Italy. Geomorphology 31:181–216. doi:10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Hartlen J, Viberg L (1988) General report: evaluation of landslide hazard. In: Proceedings of the fifth international symposium on landslides, Balkema, Lausanne, pp 1037–1057

  • Huang R, Li Y (1992) Logical model of slope stability prediction in the three gorges reservoir area, China. In: Proceedings of the sixth international symposium on landslides—Glissements de terrain, Balkema, Christchurch, pp 977–981

  • Hutchinson J, Chandler M (1991) A preliminary landslide hazard zonation of the undercliff of the Isle of wight. In: Chandler R (ed) Slope stability engineering. Developments and applications. Thomas Telford, London, pp 197–206

    Google Scholar 

  • Institute of Geology and Mineral Exploration—IGME (1985) Geological map of Greece—Melambes sheet (scale 1:50.000). IGME, Athens

    Google Scholar 

  • Institute of Geology and Mineral Exploration—IGME (1991) Geological map of Greece—Perama sheet (Scale 1:50.000). IGME, Athens

    Google Scholar 

  • Institute of Geology and Mineral Exploration—IGME (1993) Geological map of Greece (Scale 1:500.000). IGME, Athens

    Google Scholar 

  • Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74(1–4):17–28. doi:10.1016/j.geomorph.2005.07.005

    Article  Google Scholar 

  • Koukis G, Ziourkas C (1991) Slope instability phenomena in Greece: a statistical analysis. Bull IAEG 43:47–60

    Google Scholar 

  • Koukis G, Tsiambaos G, Sabatakakis N (1994) Slope movements in the Greek territory: a statistical approach. In: Proceedings of 7th international IAEG congress, Balkema, Rotterdam, pp 4621–4628

  • Koukis G, Tsiambaos G, Sabatakakis N (1996) Landslides in Greece: research evolution and quantitative analysis. In: Senneset K (ed) Proceedings of 7th international symposium on landslides, Balkema, Rotterdam, pp 1935–1940

  • Koukis G, Tsiambaos G, Sabatakakis N (1997) Landslide movements in Greece: engineering geological characteristics and environmental consequences. In: Proceedings of international symposium of engineering, geology and the envar, IAEG, Balkema, Rotterdam, pp 789–792

  • Koukis G, Sabatakakis N, Nikolaou N, Loupasakis C (2005) Landslide hazard zonation in Greece. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Proceedings of open symposium on landslide risk analysis and sustainable disaster management in the First General Assembly of International Consortium on Landslides, Springer-Verlag, Berlin, pp 291–296

  • Lee EM, Jones DKC (2004) Landslide risk assessment. Thomas Telford, London, p 454

    Google Scholar 

  • Lee S, Choi J, Min K (2004a) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int J Remote Sens 25(11):2037–2052. doi:10.1080/01431160310001618734

    Article  Google Scholar 

  • Lee S, Ryu J, Won J, Park H (2004b) Determination and application of the weight for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302. doi:10.1016/S0013-7952(03)00142-X

    Article  Google Scholar 

  • Leroi E (1997) Landslide risk mapping: problems, limitation and developments. In: Cruden Fell (ed) Landslide risk assessment. Balkema, Rotterdam, pp 239–250

    Google Scholar 

  • Liu JG, Mason PJ, Clerici N, Chen S, Davis A, Miao F, Deng H, Liang L (2004) Landslide hazard assessment in the three gorges area of the Yangtze river using ASTER imagery: Zigui–Badong. Geomorphology 61(1–2):171–187. doi:10.1016/j.geomorph.2003.12.004

    Article  Google Scholar 

  • Luzi L, Pergalani F, Terlien MTJ (2000) Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Eng Geol 58(3–4):313–336. doi:10.1016/S0013-7952(00)00041-7

    Article  Google Scholar 

  • Mantovani F, Soeters R, van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15:213–225. doi:10.1016/0169-555X(95)00071-C

    Article  Google Scholar 

  • Mason PJ, Rosenbaum MS (2002) Predicting future landslides in a residential area on the basis of geohazard mapping: the Langhe Hills in Piemonte, NW Italy. Q J Eng Geol Hydrol 35:317–326. doi:10.1144/1470-9236/00047

    Article  Google Scholar 

  • Miles SB, Ho CL (1999) Rigorous landslide hazard zonation using Newmark’s method and stochastic ground motion simulation. Soil Dyn Earthquake Eng 18(4):305–323. doi:10.1016/S0267-7261(98)00048-7

    Article  Google Scholar 

  • Miles SB, Keefer DK (1999) Evaluation of seismic slope-performance models using a regional case study. Environ Eng Geosci 6(1):25–39. doi:10.1046/j.1526-0984.1999.08023.x

    Article  Google Scholar 

  • Montgomery DR, Schmidt KM, Dietrich WE, Greenberg HM (2000) Forest clearing and regional landsliding in the Pacific Northwest. Geology 28:311–314. doi:10.1130/0091-7613(2000)28<311:FCARL>2.0.CO;2

    Article  Google Scholar 

  • Moon A, Olds R, Wilson R, Burman B (1992) Debris flow zoning at Montrose, Victoria. In: Proceedings of 6th international symposium on landslides, vol 2. Balkema, Rotterdam, pp 1015–1022

  • Nash D (1987) A comparative review of limit equilibrium methods of slope stability analysis. In: Anderson MG, Richards KJ (eds) Slope stability. Wiley, New York, pp 11–75

    Google Scholar 

  • Park NW, Chi KH (2007) Quantitative assessment of landslide susceptibility using high-resolution remote sensing data and a generalized additive model’. Int J Remote Sens 29(1):247–264. doi:10.1080/01431160701227661

    Article  Google Scholar 

  • Polemio M, Sdao F (1999) The role of rainfall in the landslide hazard: the case of the Avigliano urban area (southern Apennines, Italy). Eng Geol 53(3–4):297–309. doi:10.1016/S0013-7952(98)00083-0

    Article  Google Scholar 

  • Refice A, Capolongo D (2002) Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Comput Geosci 28(6):735–749. doi:10.1016/S0098-3004(01)00104-2

    Article  Google Scholar 

  • Saaty TL (1980) The analytical hierarchy process. McGraw Hill, New York

    Google Scholar 

  • Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. Int J Remote Sens 23(2):357–369. doi:10.1080/01431160010014260

    Article  Google Scholar 

  • Sdao F, Simeone V (2007) Mass movements affecting Goddess Mefitis sanctuary in Rossano di Vaglio (Basilicata, southern Italy). J Cult Herit 8(1):77–80

    Article  Google Scholar 

  • Siddle HJ, Jones DB, Payne HR (1991) Development of a methodology for landslip potential mapping in the Rhondda valley. In: Chandler RJ (ed) Slope stability engineering. Thomas Telford, London, pp 137–142

    Google Scholar 

  • Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner KA, Schuster RL (eds) Landslides: investigation and mitigation. Transport Research Board Special Report, vol 247. pp 129–177

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913–920

    Google Scholar 

  • Strahler AN (1964) Quantitative geomorphology of basins and channel networks. In: Chow VT (ed) Handbook of applied hydrology. Mcgraw Hill, New York

    Google Scholar 

  • Suzen ML, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321. doi:10.1016/S0013-7952(03)00143-1

    Article  Google Scholar 

  • Tataris A, Christodoulou C (1965) The geological structure of Leuca Mountains. Bull Geol Soc Greece 6:319–347

    Google Scholar 

  • Terlien MTJ, Van Asch ThWJ, van Westen CJ (1995) Deterministic modelling in GIS-based landslide hazard assessment. In: Carrar A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, London, pp 57–77

    Google Scholar 

  • Tsiampaos G (1989) Engineering geological characteristics of the Iraklion marls, Crete, PhD Thesis, Technical Chamber of Greece, Iraklion, p 358

  • van Westen CJ (1994) GIS in landslide hazard zonation: a review, with examples from the Andes of Colombia. In: Price M, Heywood I (eds) Mountain environments and geographic information system. Taylor and Francis, London, pp 135–165

    Google Scholar 

  • van Westen CJ, Rengers N, Terlien MTJ (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86:4004–4414

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides: analysis and control, special report 176. Transportation Research Board, National Academy of Sciences, Washington, pp 11–33

    Google Scholar 

  • Varnes DJ, IAEG Commission on landslides and other mass-movements (1984) Landslide hazard zonation: a review of principles and practice. UNESCO Press, Paris

  • Ward TJ, Li RM, Simons DB (1981) Use of a mathematical model for estimating potential landslide sites in steep forested drainage basins. IAHS Publ 132:21–41

    Google Scholar 

  • Wieczorek GF, Mandrone G, DeCola L (1997) The influence of hillslope shape on debris-flowinitiation. In: Chen CL (ed) Debrisflow hazards mitigation: mechanics, prediction, and assessment. American Society of Civil Engineers, New York, pp 21–31

    Google Scholar 

  • WP/WLI (International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory) (1994) A suggested method for reporting landslides causes. Bull Int Assoc Eng Geol 50:71–74. doi:10.1007/BF02594958

    Article  Google Scholar 

  • Wu S, Shi L, Wang R, Tan C, Hu D, Mei Y, Xu R (2001) Zonation of the landslide hazard in the forereservoir region of the three gorges project on the Yangtze River. Eng Geol 59:51–58. doi:10.1016/S0013-7952(00)00061-2

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72:1–12. doi:10.1016/j.catena.2007.01.003

    Article  Google Scholar 

Download references

Acknowledgments

The project is co-funded by the European Social Fund and National Resources in the framework of the project INTERREG III B ARCHIMED, sub-project A1.020 entitled “Methodology integration of EO techniques as operative tool for land degradation management and planning in Mediterranean areas”. We are also grateful to the students (Nikos Nikakis and Argyro Stefanaki) involved in this work digitizing the topographic maps of the study area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kouli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouli, M., Loupasakis, C., Soupios, P. et al. Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece. Nat Hazards 52, 599–621 (2010). https://doi.org/10.1007/s11069-009-9403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-009-9403-2

Keywords

Navigation