Skip to main content
Log in

Landslide phenomena related to major fault tectonics: rift zone of Corinth Gulf, Greece

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Landslides in the Gulf of Corinth rift zone, Greece, are mainly in the vicinity of major active faults. The current study reports a representative landslide in this structurally controlled region which periodically moved, triggered/reactivated by heavy rainfall and earthquake activity. The composite landslide developed on structurally complex formations including sheared and weathered flysch—the most landslide-prone geological formation in Greece. The experience on the site during the last thirty-five years has contributed to a better understanding of the particular landslide mechanism and helped in the consideration of the effectiveness of various remedial works.

Résumé

Les glissements affectant la zone de rift du Golfe de Corinthe, en Grèce, se situent principalement au voisinage de failles actives. L’étude concerne un glissement représentatif d’un secteur où périodiquement de fortes pluies ou l’activité tectonique déclenche ou réactive des mouvements de terrain. Le glissement composite se développe dans des formations de structure complexe comportant des flyschs cisaillés et altérés: la formation géologique de Grèce la plus propice aux glissements de terrain. Le suivi du site durant les dernières trente cinq années a permis une meilleure compréhension des mécanismes particuliers de glissement et aidé à la définition de divers travaux de confortement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ambraseys NN, Jackson J (1990) Seismicity and associated strain of Central Greece between 1890 and 1988. Geophys J Int 101:663–708

    Article  Google Scholar 

  • Ambrosi C, Crosta GB (2006) Large sackung along major tectonic features in the Central Italian Alps. Eng Geol 83:183–200

    Article  Google Scholar 

  • Andronopoulos B (1977) The complex geological structure and the relation to the landslides (Panagopoula-Greece). In: Proceedings of the international symposium on the geotechnics of structurally complex formations, Capri, vol 1, pp 1–9

  • Andronopoulos B (1982) The geological structure and the tectonic evolution as factors of instability in the Pindos zone area (Greece). Rock Mech 15:41–54

    Article  Google Scholar 

  • Ahrendt A, Zuquette LV (2003) Triggering factors of landslides in Campos do Jordão city, Brazil. Bull Eng Geol Environ 62:231–244

    Article  Google Scholar 

  • Armijo R, Meyer B, King GCP, Rigo A, Papanastassiou D (1996) Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys J Int 126:11–53

    Article  Google Scholar 

  • Ayalew L (1999) The effect of seasonal rainfall on landslides in the highlands of Ethiopia. Bull Eng Geol Environ 58:9–19

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan: Part I. Case studies, monitoring techniques and environmental considerations. Eng Geol 81:419–431

    Article  Google Scholar 

  • Baron I, Agliardi F, Ambrowi C, Crosta GB (2005) Numerical analysis of deep-seated mass movements in the Magura Nappe; Flysch Belt of the Western Carpathians (Czech Republic). Nat Hazards Earth Syst Sci 5:367–374

    Article  Google Scholar 

  • Bommer JJ, Rodríguez CE (2002) Earthquake-induced landslides in Central America. Eng Geol 63:189–220

    Article  Google Scholar 

  • Borgatti L, Corsini A, Barbieri M, Sartini G, Truffelli G, Caputo G, Puglisi C (2005) Large reactivated landslides in weak rock masses: a case study from the Northern Apennines (Italy). Landslides 3:115–124

    Article  Google Scholar 

  • Bromhead EN (1979) A simple ring shear apparatus. Ground Eng 12(5):40–44

    Google Scholar 

  • Bromhead EN (1986) The stability of slopes. Surrey University Press, London, 373pp

  • Burton PW, Xu YB, Qin CY, Tselentis GA, Sokos E (2004) A catalogue of seismicity in Greece and the adjacent areas for the twentieth century. Tectonophysics 390(1–4):117–127

    Article  Google Scholar 

  • Canuti P, Focardi P, Garzonio CA (1985) Correlation between rainfall and landslides. Bull Int Assoc Eng Geol 32:49–54

    Article  Google Scholar 

  • Clarke PJ, Davies RR, England PC, Parsons B, Billiris H, Paradissis D, Veis G, Cross PA, Denys PH, Ashkenazi V, Bingley R, Kahle HG, Muller MV, Briole P (1998) Crustal strain in central Greece from repeated GPS measurements in the interval 1989–1997. Geophys J Int 135:195–214

    Article  Google Scholar 

  • Cotecchia V (2006) The second Hans Cloos Lecture. Experience drawn from the great Ancona Landslide of 1982. Bull Eng Geol Environ 65:1–41

    Article  Google Scholar 

  • Crosta GB, Zanchi A (2000) Deep-seated slope deformations. Huge, extraordinary, enigmatic phenomena. In: Bromhead E, Dixon N, Ibsen M (eds) Landslides in research, theory and practice. Thomas Telford proceedings of 8th international symposium landslides, Cardiff, June 2000. Thomas Telford, pp 351–358

  • Davies RR, England PC, Parsons BE, Billiris H, Paradissis D, Veis G (1997) Geodetic strain of Greece in the interval 1892–1992. J Geophys Res 102:24571–24588

    Article  Google Scholar 

  • Dia AN, Cohen AS, O’Nions RK, Jackson JA (1997) Rates of uplift investigated through 230Th dating in the Gulf of Corinth Greece. Chem Geol 138:171–184

    Article  Google Scholar 

  • Doutsos T, Kokkalas S (2001) Stress and deformation patterns in the Aegean region. J Struct Geol 23:455–472

    Article  Google Scholar 

  • Doutsos T, Piper DJW (1990) Listric faulting, sedimentation and morphological evolution of the Quaternary eastern Corinth rift, Greece: first stages of continental rifting. Bull Geol Soc Am 102:812–829

    Article  Google Scholar 

  • Doutsos T, Kontopoulos N, Frydas D (1987) Neotectonic evolution of northwestern- continental Greece. Geol Rundsch 76(2):433–450

    Article  Google Scholar 

  • Doutsos T, Koukouvelas I, Poulimenos G, Kokkalas S, Xypolias P, Skourlis K (2000) An exhumation model of the south Peloponnesus, Greece. Int J Earth Sci 89:350–365

    Article  Google Scholar 

  • Esposito E, Porfido S, Simonelli AL, Mastrolorenzo G, Iaccarino G (2000) Landslides and other surface effects induced by the 1997 Umbria–Marche seismic sequence. Eng Geol 58:353–376

    Article  Google Scholar 

  • Ferentinos G, Brooks M, Doutsos T (1985) Quaternary tectonics in the Gulf of Patras, western Greece. J Struct Geol 7(6):713–717

    Article  Google Scholar 

  • Ferentinos G, Papatheodorou G, Collins M (1988) Sediment transport processes on an active submarine fault escarpment: Gulf of Corinth, Greece. Mar Geol 83:43–61

    Article  Google Scholar 

  • Fiorillo F, Wilson RC (2004) Rainfall induced debris flows in pyroclastic deposits, Campania (southern Italy). Eng Geol 75:263–289

    Article  Google Scholar 

  • Flotte N, Sorel D, Muller C, Tensi J (2005) Along strike changes in the structural evolution over a brittle detachment fault: example of the Pleistocene Corinth-Patras rift (Greece). Tectonophysics 403:77–94

    Article  Google Scholar 

  • Fukuoka H, Wang G, Sassa K, Wang F, Matsumoto T (2004) Earthquake-induced rapid long-traveling flow phenomenon: May 2003 Tsukidate landslide in Japan. Landslides 1:151–155

    Article  Google Scholar 

  • Fytrolakis N, Antoniadis D (1974) Landslides and geological conditions through the national road from Korinthos to Patras. Min Met Chron 20:31–38 (in Greek)

    Google Scholar 

  • Guidicini G, Iwasa OY (1977) Tentative correlation between rainfall and landslides in the humid tropical environment. Bull Eng Geol Environ 16:13–20

    Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P (1996) The influence of structural setting and lithology on landslide type and pattern. Environ Eng Geosci 2(4):531–555

    Google Scholar 

  • Hong Y, Hiura H, Shino K, Sassa K, Suemine A, Fukuoka H, Wang G (2005) The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan. Landslides 2:97–105

    Article  Google Scholar 

  • Hradecký J, Pánek T, Klimová R (2007) Landslide complex in the northern part of the Silesian Beskydy Mountains (Czech Republic). Landslides 4:53–62

    Article  Google Scholar 

  • IAEG International Association of Engineering Geology (1976) Engineering Geological Maps: a guide to their preparation. UNESCO Press, Paris, 79 pp

  • Ibsen ML, Casagli N (2004) Rainfall patterns and related landslide incidence in the Porretta-Vergato region, Italy. Landslides 1:143–150

    Article  Google Scholar 

  • International Landslide Center http://www.landslidecentre.org/database.htm

  • Jackson J, McKenzie D (1988) The relationship between plate motions and seismic moment tensors and the rate of active deformation in the Mediterranean and Middle East. Geophys J R Astron Soc 93:45–73

    Google Scholar 

  • Jibson RW, Prentice CS, Borissoff BA, Rogozhin EA, Langer CL (1994) Some observations of landslides triggered by the 29 April 1991 Racha earthquake, Republic of Georgia. Bull Seismol Soc Am 84:964–973

    Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. Bull Geol Soc Am 95:406–421

    Article  Google Scholar 

  • Keefer DK (2000) Statistical analysis of an earthquake-induced landslide distribution-the 1989 Loma Prieta, California event. Eng Geol 58:231–249

    Article  Google Scholar 

  • Keraudren B, Sorel D (1987) The terraces of Corinth Greece. A detailed record of eustatic sea-level variations during the last 500, 000 years. Mar Geol 77:99–107

    Article  Google Scholar 

  • Khazai B, Sitar N (2004) Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events. Eng Geol 71:79–95

    Article  Google Scholar 

  • Kim SK, Hong WP, Kim YM (1991) Prediction of rainfall-triggered landslides in Korea. In: Bell DH (ed) Proceedings of the 6th international symposium on landslides, Christchurch, New Zealand. Balkema, Rotterdam, pp 989–994

  • Kokkalas S, Koukouvelas IK (2005) Fault-scarp degradation modeling in central Greece: the Kaparelli and Eliki faults (Gulf of Corinth) as a case study. J Geodyn 40:200–215

    Article  Google Scholar 

  • Kontopoulos N, Doutsos T (1985) Sedimentology and tectonics of the Antirion area (western Greece): Bull Geol Soc Italia 104:479–489

    Google Scholar 

  • Kontopoulos N, Zelilidis A (1997) Depositional environments of the coarse-grained lower Pleistocene deposits in the Rio-Antirio basin, Greece. In: Marinos P, Koukis, G, Tsiambaos G (eds) Engineering geology and the environment. Proceedings of the international symposium on engineering geology and the environment. Balkema AA, Rotterdam, pp 199–204

  • Koukis G, Ziourkas C (1991) Slope instability phenomena in Greece: a statistical analysis. Bull Int Assoc Eng Geol Environ 43:47–60

    Article  Google Scholar 

  • Koukis G, Sabatakakis N, Nikolaou N, Loupasakis C (2005) Landslide hazard zonation in Greece. In: Proceedings of the open symposium on landslide risk analysis and sustainable disaster management by international consortium on landslides. Washington, USA, Chapter 37, pp. 291–296

  • Koukouvelas I, Doutsos T (1996) Implications of structural segmentation during earthquakes: the 1995 Egion earthquake, Gulf of Corinth. Greece J Struct Geol 18:1381–1388

    Article  Google Scholar 

  • Margielewski W (2006) Structural control and types of movements of rock mass in anisotropic rocks: case studies in the Polish Flysch Carpathians. Geomorphology 77:47–68

    Article  Google Scholar 

  • Moretti I, Sakellariou D, Lykousis V, Micarelli L (2003) The Gulf of Corinth: an active half graben? J Geodyn 36:323–340

    Article  Google Scholar 

  • Nilsen TH, Taylor FA, Brabb EE (1976) Recent landslides in Alameda County, California (1940–71): an estimate of economic losses and correlations with slope, rainfall and ancient landslide deposits. US Geological Survey Bulletin 1398

  • Onodera T, Yoshinaka R, Kazama H (1974) Slope failures caused by heavy rainfall in Japan. In: Proceedings of 2nd congress of the international association of engineering geologists, Sao Paolo, 2. pp V11.1–V11.10

  • Ori G (1989) Geologic history of the extensional basin of the Gulf of Corinth (Miocen–Pleistocen), Greece. Geology 17:918–921

    Article  Google Scholar 

  • Papadopoulos G, Vassilopoulou A, Plessa A (2000) A new catalogue of historical earthquakes in the Corinth rift central Greece: 480 bc–1910 ad. In: Papadopoulos G (ed) Historical earthquakes and tsunamis in the Corinth rift, Central Greece, Publication No. 12. National Observatory of Athens, Institute of Geodynamics, pp 9–119

  • Papazachos BC, Papazachou C (1997) The Earthquakes of Greece. Ziti Publications, Thessaloniki, 304 pp

  • Poyatzi E, Kynigalaki M, Nikolaou N (2005) A summary of geological hazards in Greece. Know risk. International Strategy for Disaster Reduction, 189–190, United Nations

  • Roberts S, Jackson J (1991) Active normal fault in central Greece: an overview. In: Roberts AM Yielding G, Freeman B (eds) The geometry of normal faults. Geological Society of London Special Publication 56, pp 125–142

  • Sabatakakis N, Koukis G, Mourtas D (2005) Composite landslides induced by heavy rainfalls in suburban areas: city of Patras and surrounding area, western Greece. Landslides 3:202–211

    Article  Google Scholar 

  • Sakellariou D, Likousis B, Rousakis I, Georgiou P (2001) Sliding phenomena on active fault slopes: Panagopoula site, Corinth Gulf. Bull Geol Soc Greece XXXIV/5:1723–1731

    Google Scholar 

  • Salciarini D, Godt JW, Savage WZ, Conversini P, Baum RL, Michael JA (2006) Modelling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides 3:181–194

    Article  Google Scholar 

  • Sassa K (2004) Preface. Landslides 1:169–171

    Article  Google Scholar 

  • Sato HP, Hasegawa H, Fujiwara S, Tobita M, Koarai M, Une H, Iwahashi J (2007) Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides 4:113–122

    Article  Google Scholar 

  • Schuster RL, Nieto AS, O’ouke TD, Crespo E, Plaza-Nieto G (1996) Mass wasting triggered by the 5 March 1987 Ecuador earthquakes. Eng Geol 42:1–23

    Article  Google Scholar 

  • Sidle RC, Dhakal AS (2002) Potential effects of environmental change on landslide hazards in forest environments. In: Sidle RC (ed) Environmental change and geomorphic hazards in forests. IUFRO Research Series, No. 9, CAB International Press, Oxen, UK, pp 123–165

  • Stamatopoulos L, Voltaggio M, Kontopoulos N (1994) 238Thr238U dating of corals from Tyrrhenian marine deposits and the palaeogeographic evolution of the Western Peloponnesus Greece. Munster Forsch Geol Palaeontol 76:345–352

    Google Scholar 

  • Stefatos A, Papatheodorou G, Ferentinos G, Leeder M, Collier R (2002) Seismic reflection imaging of active offshore faults in the Gulf of Corinth: their seismotectonic significance. Basin Res 14:487–502

    Article  Google Scholar 

  • Zelilidis A (2000) Drainage evolution in a rifted basin, Corinth graben, Greece. Geomorphology 35:69–85

    Article  Google Scholar 

  • Zelilidis A, Koukouvelas I, Doutsos T (1988) Neogene palaeostress changes behind the forearc fold belt in the Patraikos Gulf area, western Greece. N Jb Geol Palaont Mh, H. 5:311–325 (Stuttgard)

    Google Scholar 

  • WP/WLI (1990) International Geotechnical Societies UNESCO Working Party on World Landslide Inventory (Chairman: DM Cruden). A suggested method for reporting a landslide. Bull Eng Geol Environ 41:5–12

    Google Scholar 

  • WP/WLI (1993) International Union of Geological Sciences Working Group on Landslides, Commission on Landslide Remediation. A suggested method for describing the activity of a landslide. Bull Eng Geol Environ 47:53–57

    Google Scholar 

  • WP/WLI (1994) International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory, Working Group on Landslide Causes (Chairman: ME Popescu). A suggested method for reporting landslide causes. Bull Eng Geol Environ 50:71–74

    Google Scholar 

  • WP/WLI (1995) International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory. Working Group on Rate of Movement (Chairman: Ch Bonnard). A suggested method for describing the rate of movement of a landslide. Bull Eng Geol Environ 52:75–78

    Google Scholar 

  • WP/WLI (2001) International Union of Geological Sciences Working Group on Landslides, Commission on Landslide Remediation (Chairman: M Popescu). A suggested method for reporting landslide remedial measures. Bull Eng Geol Environ 60:69–74

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Environment, Physical Planning and Public Works, EYDE/PATHE of Greece for the provision of data. They also thank the anonymous reviewers for their constructive comments which significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferentinou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koukis, G., Sabatakakis, N., Ferentinou, M. et al. Landslide phenomena related to major fault tectonics: rift zone of Corinth Gulf, Greece. Bull Eng Geol Environ 68, 215–229 (2009). https://doi.org/10.1007/s10064-008-0184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-008-0184-8

Keywords

Mots clés

Navigation