Skip to main content

Advertisement

Log in

Induction of Vascular Endothelial Growth Factor and Matrix Metalloproteinase-9 via CD47 Signaling in Neurovascular Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurovascular injury comprises a wide spectrum of pathophysiology that underlies the progression of brain injury after cerebral ischemia. Recently, it has been shown that activation of the integrin-associated protein CD47 mediates the development of blood–brain barrier injury and edema after cerebral ischemia. However, the mechanisms that mediate these complex neurovascular effects of CD47 remain to be elucidated. Here, we compare the effects of CD47 signaling in brain endothelial cells, astrocytes, and pericytes. Exposure to 4N1 K, a specific CD47-activating peptide derived from the major CD47 ligand thrombospondin-1, upregulated two major neurovascular mediators, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9), in brain endothelial cells and astrocytes. No changes were detected in pericytes. These findings may provide a potential mechanism for CD47-induced changes in blood–brain barrier homeostasis, and further suggest that CD47 may be a relevant neurovascular target in stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    Article  CAS  PubMed  Google Scholar 

  2. Fisher M, Bastan B (2008) Treating acute ischemic stroke. Curr Opin Drug Discov Devel 11:626–632

    CAS  PubMed  Google Scholar 

  3. Candelario-Jalil E (2009) Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs 10:644–654

    PubMed  Google Scholar 

  4. Jin G, Tsuji K, Xing C et al (2009) CD47 gene knockout protects against transient focal cerebral ischemia in mice. Exp Neurol 217:165–170

    Article  CAS  PubMed  Google Scholar 

  5. Callahan MK, Williams KA, Kivisakk P et al (2004) CXCR3 marks CD4+ memory T lymphocytes that are competent to migrate across a human brain microvascular endothelial cell layer. J Neuroimmunol 153:150–157

    Article  CAS  PubMed  Google Scholar 

  6. Guo S, Kim WJ, Lok J et al (2008) Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci USA 105:7582–7587

    Article  CAS  PubMed  Google Scholar 

  7. Arai K, Lee SR, Lo EH (2003) Essential role for ERK mitogen-activated protein kinase in matrix metalloproteinase-9 regulation in rat cortical astrocytes. Glia 43:254–264

    Article  PubMed  Google Scholar 

  8. Brown EJ, Frazier WA (2001) Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 11:130–135

    Article  CAS  PubMed  Google Scholar 

  9. Fagan SC, Hess DC, Hohnadel EJ et al (2004) Targets for vascular protection after acute ischemic stroke. Stroke 35:2220–2225

    Article  CAS  PubMed  Google Scholar 

  10. Bates DO, Hillman NJ, Williams B et al (2002) Regulation of microvascular permeability by vascular endothelial growth factors. J Anat 200:581–597

    Article  CAS  PubMed  Google Scholar 

  11. Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29:2189–2195

    CAS  PubMed  Google Scholar 

  12. Asahi M, Asahi K, Jung JC et al (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20:1681–1689

    Article  CAS  PubMed  Google Scholar 

  13. Desai BS, Monahan AJ, Carvey PM et al (2007) Blood-brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant 16:285–299

    PubMed  Google Scholar 

  14. Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    Article  CAS  PubMed  Google Scholar 

  15. Isenberg JS, Romeo MJ, Abu-Asab M et al (2007) Increasing survival of ischemic tissue by targeting CD47. Circ Res 100:712–720

    Article  CAS  PubMed  Google Scholar 

  16. Adams JC, Lawler J (2004) The thrombospondins. Int J Biochem Cell Biol 36:961–968

    Article  CAS  PubMed  Google Scholar 

  17. Esemuede N, Lee T, Pierre-Paul D et al (2004) The role of thrombospondin-1 in human disease. J Surg Res 122:135–142

    Article  CAS  PubMed  Google Scholar 

  18. Isenberg JS, Roberts DD, Frazier WA (2008) CD47: a new target in cardiovascular therapy. Arterioscler Thromb Vasc Biol 28:615–621

    Article  CAS  PubMed  Google Scholar 

  19. Legrand C, Woimant F, Haguenau M et al (1991) Platelet surface glycoprotein changes in patients with cerebral ischemia. Nouv Rev Fr Hematol 33:497–499

    CAS  PubMed  Google Scholar 

  20. Xing C, Lee S, Kim WJ et al (2009) Role of oxidative stress and caspase 3 in CD47-mediated neuronal cell death. J Neurochem 108:430–436

    Article  CAS  PubMed  Google Scholar 

  21. Koshimizu H, Araki T, Takai S et al (2002) Expression of CD47/integrin-associated protein induces death of cultured cerebral cortical neurons. J Neurochem 82:249–257

    Article  CAS  PubMed  Google Scholar 

  22. Xing C, Lee S, Kim WJ et al (2009) Neurovascular effects of CD47 signaling: promotion of cell death, inflammation, and suppression of angiogenesis in brain endothelial cells in vitro. J Neurosci Res 87:2571–2577

    Article  CAS  PubMed  Google Scholar 

  23. Isenberg JS, Romeo MJ, Yu C et al (2008) Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling. Blood 111:613–623

    Article  CAS  PubMed  Google Scholar 

  24. Lo EH (2008) A new penumbra: transitioning from injury into repair after stroke. Nat Med 14:497–500

    Article  CAS  PubMed  Google Scholar 

  25. Lamy L, Foussat A, Brown EJ et al (2007) Interactions between CD47 and thrombospondin reduce inflammation. J Immunol 178:5930–5939

    CAS  PubMed  Google Scholar 

  26. Griffiths MR, Gasque P, Neal JW (2009) The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain. J Neuropathol Exp Neurol 68:217–226

    Article  CAS  PubMed  Google Scholar 

  27. Liauw J, Hoang S, Choi M et al (2008) Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. J Cereb Blood Flow Metab 28:1722–1732

    Article  CAS  PubMed  Google Scholar 

  28. Christopherson KS, Ullian EM, Stokes CC et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433

    Article  CAS  PubMed  Google Scholar 

  29. Kim JA, Tran ND, Wang SJ et al (2003) Astrocyte regulation of human brain capillary endothelial fibrinolysis. Thromb Res 112:159–165

    Article  CAS  PubMed  Google Scholar 

  30. Kim JA, Tran ND, Li Z et al (2006) Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab 26:209–217

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by NIH grants R37-NS37074, R01-NS48422, R01-NS53560, P01-NS55104, and a Bugher award from the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eng H. Lo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, C., Arai, K., Park, KP. et al. Induction of Vascular Endothelial Growth Factor and Matrix Metalloproteinase-9 via CD47 Signaling in Neurovascular Cells. Neurochem Res 35, 1092–1097 (2010). https://doi.org/10.1007/s11064-010-0159-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0159-6

Keywords

Navigation