Skip to main content

Advertisement

Log in

Pediatric high-grade glioma: aberrant epigenetics and kinase signaling define emerging therapeutic opportunities

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Supratentorial pediatric high-grade gliomas (pHGGs) are aggressive malignancies that lack effective treatment options. Deep genomic sequencing by multiple groups has revealed that the primary alterations unique to pHGGs occur in epigenetic and kinase genes. These mutations, fusions, and deletions present a therapeutic opportunity by use of small molecules targeting epigenetic modifiers and kinases that contribute to pHGG growth.

Methods

Using a targeted search of the pre-clinical literature and clinicaltrials.gov for kinase and epigenetic pathways in pHGG, we collectively describe how these mechanisms are being targeted in pre-clinical animal models and in current clinical trials, as well as propose unexplored therapeutic possibilities for future investigations.

Results

Relevant pHGG kinases are targetable by several FDA-approved or clinical-stage kinase inhibitors, including altered BRAF/MET/NTRK/ALK and wild-type PI3K/EGFR/PDGFR/VEGF/AXL. Epigenetic proteins implicated in pHGG are also clinically targetable and include histone erasers, writers and readers such as HDACs, demethylases LSD1/JMJD3, methyltransferase EZH2, chromatin reader bromodomains, and chromatin remodeler subunit BMI-1. Crosstalk between these pathways can occur involving kinases such as EGFR and AMPK interacting with epigenetic modifiers such as HDACs or EZH2. Single agent trial results of kinase inhibitors or epigenetic targets alone are underwhelming and hampered by poor pharmacokinetics, adaptive resistance, and broad inclusion criteria.

Conclusions

The genetic and phenotypic diversity of pHGGs is now well characterized after large-scale sequencing studies on patient tissue. However, clinical treatment paradigms have not yet shifted in response to this information. Combination therapies targeting multiple kinases or epigenetic targets may hold more promise, especially if attempted in selected patient populations with hemispheric pHGG tumors and relevant targeted therapeutic biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Coleman C, Stoller S, Grotzer M, Stucklin AG, Nazarian J, Mueller S (2020) Pediatric hemispheric high-grade glioma: targeting the future. Cancer Metastasis Rev. https://doi.org/10.1007/s10555-020-09850-5

    Article  PubMed  Google Scholar 

  2. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, Bjerke L, Clarke M, Vinci M, Nandhabalan M, Temelso S, Popov S, Molinari V, Raman P, Waanders AJ, Han HJ, Gupta S, Marshall L, Zacharoulis S, Vaidya S, Mandeville HC, Bridges LR, Martin AJ, Al-Sarraj S, Chandler C, Ng HK, Li X, Mu K, Trabelsi S, Brahim DH, Kisljakov AN, Konovalov DM, Moore AS, Carcaboso AM, Sunol M, de Torres C, Cruz O, Mora J, Shats LI, Stavale JN, Bidinotto LT, Reis RM, Entz-Werle N, Farrell M, Cryan J, Crimmins D, Caird J, Pears J, Monje M, Debily MA, Castel D, Grill J, Hawkins C, Nikbakht H, Jabado N, Baker SJ, Pfister SM, Jones DTW, Fouladi M, von Bueren AO, Baudis M, Resnick A, Jones C (2017) Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32:520–537.e525. https://doi.org/10.1016/j.ccell.2017.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meel MH, de Gooijer MC, Metselaar DS, Sewing ACP, Zwaan K, Waranecki P, Breur M, Buil LCM, Lagerweij T, Wedekind LE, Twisk JWR, Koster J, Hashizume R, Raabe EH, Montero-Carcaboso A, Bugiani M, Phoenix TN, van Tellingen O, van Vuurden DG, Kaspers GJL, Hulleman E (2020) Combined therapy of AXL and HDAC inhibition reverses mesenchymal transition in diffuse intrinsic pontine glioma. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-3538

    Article  PubMed  Google Scholar 

  4. Gay CM, Balaji K, Byers LA (2017) Giving AXL the axe: targeting AXL in human malignancy. Br J Cancer 116:415–423. https://doi.org/10.1038/bjc.2016.428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Díaz-López A, Díaz-Martín J, Moreno-Bueno G, Cuevas EP, Santos V, Olmeda D, Portillo F, Palacios J, Cano A (2015) Zeb1 and Snail1 engage miR-200f transcriptional and epigenetic regulation during EMT. Int J Cancer 136:E62–73. https://doi.org/10.1002/ijc.29177

    Article  CAS  PubMed  Google Scholar 

  6. Meel MH, Schaper SA, Kaspers GJL, Hulleman E (2018) Signaling pathways and mesenchymal transition in pediatric high-grade glioma. Cell Mol Life Sci 75:871–887. https://doi.org/10.1007/s00018-017-2714-7

    Article  CAS  PubMed  Google Scholar 

  7. Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–696. https://doi.org/10.1016/j.cell.2012.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohammad F, Weissmann S, Leblanc B, Pandey DP, Hojfeldt JW, Comet I, Zheng C, Johansen JV, Rapin N, Porse BT, Tvardovskiy A, Jensen ON, Olaciregui NG, Lavarino C, Sunol M, de Torres C, Mora J, Carcaboso AM, Helin K (2017) EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med 23:483–492. https://doi.org/10.1038/nm.4293

    Article  CAS  PubMed  Google Scholar 

  9. Wan L, Xu K, Wei Y, Zhang J, Han T, Fry C, Zhang Z, Wang YV, Huang L, Yuan M, Xia W, Chang WC, Huang WC, Liu CL, Chang YC, Liu J, Wu Y, Jin VX, Dai X, Guo J, Jiang S, Li J, Asara JM, Brown M, Hung MC, Wei W (2018) Phosphorylation of EZH2 by AMPK suppresses PRC2 methyltransferase activity and oncogenic function. Mol Cell 69:279–291.e275. https://doi.org/10.1016/j.molcel.2017.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shen H, Yu M, Tsoli M, Chang C, Joshi S, Liu J, Ryall S, Chornenkyy Y, Siddaway R, Hawkins C, Ziegler DS (2020) Targeting reduced mitochondrial DNA quantity as a therapeutic approach in pediatric high-grade gliomas. Neuro-Oncology 22:139–151. https://doi.org/10.1093/neuonc/noz140

    Article  CAS  PubMed  Google Scholar 

  11. Liu F, Hon GC, Villa GR, Turner KM, Ikegami S, Yang H, Ye Z, Li B, Kuan S, Lee AY, Zanca C, Wei B, Lucey G, Jenkins D, Zhang W, Barr CL, Furnari FB, Cloughesy TF, Yong WH, Gahman TC, Shiau AK, Cavenee WK, Ren B, Mischel PS (2015) EGFR Mutation promotes glioblastoma through epigenome and transcription factor network remodeling. Mol Cell 60:307–318. https://doi.org/10.1016/j.molcel.2015.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Del Vecchio CA, Giacomini CP, Vogel H, Jensen KC, Florio T, Merlo A, Pollack JR, Wong AJ (2013) EGFRvIII gene rearrangement is an early event in glioblastoma tumorigenesis and expression defines a hierarchy modulated by epigenetic mechanisms. Oncogene 32:2670–2681. https://doi.org/10.1038/onc.2012.280

    Article  CAS  PubMed  Google Scholar 

  13. Clarke TL, Tang R, Chakraborty D, Van Rechem C, Ji F, Mishra S, Ma A, Kaniskan H, Jin J, Lawrence MS, Sadreyev RI, Whetstine JR (2020) Histone lysine methylation dynamics control EGFR DNA copy-number amplification. Cancer Discov 10:306–325. https://doi.org/10.1158/2159-8290.CD-19-0463

    Article  CAS  PubMed  Google Scholar 

  14. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, Fang D, Huang X, Tom MW, Ngo V, Solomon D, Mueller S, Paris PL, Zhang Z, Petritsch C, Gupta N, Waldman TA, James CD (2014) Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 20:1394–1396. https://doi.org/10.1038/nm.3716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Piunti A, Hashizume R, Morgan MA, Bartom ET, Horbinski CM, Marshall SA, Rendleman EJ, Ma Q, Takahashi YH, Woodfin AR, Misharin AV, Abshiru NA, Lulla RR, Saratsis AM, Kelleher NL, James CD, Shilatifard A (2017) Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med 23:493–500. https://doi.org/10.1038/nm.4296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar SS, Sengupta S, Lee K, Hura N, Fuller C, DeWire M, Stevenson CB, Fouladi M, Drissi R (2017) BMI-1 is a potential therapeutic target in diffuse intrinsic pontine glioma. Oncotarget 8:62962–62975. https://doi.org/10.18632/oncotarget.18002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L, Debily MA, Quist MJ, Davis LE, Huang EC, Woo PJ, Ponnuswami A, Chen S, Johung TB, Sun W, Kogiso M, Du Y, Qi L, Huang Y, Hutt-Cabezas M, Warren KE, Le Dret L, Meltzer PS, Mao H, Quezado M, van Vuurden DG, Abraham J, Fouladi M, Svalina MN, Wang N, Hawkins C, Nazarian J, Alonso MM, Raabe EH, Hulleman E, Spellman PT, Li XN, Keller C, Pal R, Grill J, Monje M (2015) Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 21:555–559. https://doi.org/10.1038/nm.3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bailey CP, Figueroa M, Gangadharan A, Yang Y, Romero MM, Kennis BA, Yadavilli S, Henry V, Collier T, Monje M, Lee DA, Wang L, Nazarian J, Gopalakrishnan V, Zaky W, Becher OJ, Chandra J (2020) Pharmacologic inhibition of lysine specific demethylase-1 (LSD1) as a therapeutic and immune-sensitization strategy in pediatric high grade glioma (pHGG). Neuro-Oncology. https://doi.org/10.1093/neuonc/noaa058

    Article  PubMed  Google Scholar 

  19. Green AL, DeSisto J, Flannery P, Lemma R, Knox A, Lemieux M, Sanford B, O’Rourke R, Ramkissoon S, Jones K, Perry J, Hui X, Moroze E, Balakrishnan I, O’Neill AF, Dunn K, DeRyckere D, Danis E, Safadi A, Gilani A, Hubbell-Engler B, Nuss Z, Levy JMM, Serkova N, Venkataraman S, Graham DK, Foreman N, Ligon K, Jones K, Kung AL, Vibhakar R (2020) BPTF regulates growth of adult and pediatric high-grade glioma through the MYC pathway. Oncogene 39:2305–2327. https://doi.org/10.1038/s41388-019-1125-7

    Article  CAS  PubMed  Google Scholar 

  20. Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A, Popov S, Bax DA, Carvalho D, Taylor KR, Vinci M, Bajrami I, McGonnell IM, Lord CJ, Reis RM, Hargrave D, Ashworth A, Workman P, Jones C (2013) Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 3:512–519. https://doi.org/10.1158/2159-8290.cd-12-0426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Lee HC, Shirazi F, Baladandayuthapani V, Lin H, Kuiatse I, Wang H, Jones RJ, Berkova Z, Singh RK, Lu J, Qian Y, Raina K, Coleman KG, Crews CM, Li B, Hailemichael Y, Thomas SK, Wang Z, Davis RE, Orlowski RZ (2018) Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia 32:2224–2239. https://doi.org/10.1038/s41375-018-0044-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Faisal A, Vaughan L, Bavetsias V, Sun C, Atrash B, Avery S, Jamin Y, Robinson SP, Workman P, Blagg J, Raynaud FI, Eccles SA, Chesler L, Linardopoulos S (2011) The aurora kinase inhibitor CCT137690 downregulates MYCN and sensitizes MYCN-amplified neuroblastoma in vivo. Mol Cancer Ther 10:2115–2123. https://doi.org/10.1158/1535-7163.MCT-11-0333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fontebasso AM, Schwartzentruber J, Khuong-Quang DA, Liu XY, Sturm D, Korshunov A, Jones DT, Witt H, Kool M, Albrecht S, Fleming A, Hadjadj D, Busche S, Lepage P, Montpetit A, Staffa A, Gerges N, Zakrzewska M, Zakrzewski K, Liberski PP, Hauser P, Garami M, Klekner A, Bognar L, Zadeh G, Faury D, Pfister SM, Jabado N, Majewski J (2013) Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol 125:659–669. https://doi.org/10.1007/s00401-013-1095-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fang J, Huang Y, Mao G, Yang S, Rennert G, Gu L, Li H, Li GM (2018) Cancer-driving H3G34V/R/D mutations block H3K36 methylation and H3K36me3-MutSα interaction. Proc Natl Acad Sci USA 115:9598–9603. https://doi.org/10.1073/pnas.1806355115

    Article  CAS  PubMed  Google Scholar 

  25. Voon HPJ, Udugama M, Lin W, Hii L, Law RHP, Steer DL, Das PP, Mann JR, Wong LH (2018) Inhibition of a K9/K36 demethylase by an H3.3 point mutation found in paediatric glioblastoma. Nat Commun 9:3142. https://doi.org/10.1038/s41467-018-05607-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Metzger E, Stepputtis SS, Strietz J, Preca BT, Urban S, Willmann D, Allen A, Zenk F, Iovino N, Bronsert P, Proske A, Follo M, Boerries M, Stickeler E, Xu J, Wallace MB, Stafford JA, Kanouni T, Maurer J, Schüle R (2017) KDM4 inhibition targets breast cancer stem-like cells. Cancer Res 77:5900–5912. https://doi.org/10.1158/0008-5472.CAN-17-1754

    Article  CAS  PubMed  Google Scholar 

  27. Roux A, Pallud J, Saffroy R, Edjlali-Goujon M, Debily M-A, Boddaert N, Sanson M, Puget S, Knafo S, Adam C, Faillot T, Cazals-Hatem D, Mandonnet E, Polivka M, Dorfmüller G, Dauta A, Desplanques M, Gareton A, Pages M, Tauziede-Espariat A, Grill J, Bourdeaut F, Doz F, Dhermain F, Mokhtari K, Chretien F, Figarella-Branger D, Varlet P (2020) High-grade gliomas in adolescents and young adults highlight histomolecular differences from their adult and pediatric counterparts. Neuro-Oncology. https://doi.org/10.1093/neuonc/noaa024

    Article  PubMed  Google Scholar 

  28. Korshunov A, Schrimpf D, Ryzhova M, Sturm D, Chavez L, Hovestadt V, Sharma T, Habel A, Burford A, Jones C, Zheludkova O, Kumirova E, Kramm CM, Golanov A, Capper D, von Deimling A, Pfister SM, Jones DTW (2017) H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol 134:507–516. https://doi.org/10.1007/s00401-017-1710-1

    Article  CAS  PubMed  Google Scholar 

  29. Huang LE (2019) Friend or foe-IDH1 mutations in glioma 10 years on. Carcinogenesis 40:1299–1307. https://doi.org/10.1093/carcin/bgz134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haase S, Garcia-Fabiani MB, Carney S, Altshuler D, Núñez FJ, Méndez FM, Núñez F, Lowenstein PR, Castro MG (2018) Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin Ther Targets 22:599–613. https://doi.org/10.1080/14728222.2018.1487953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Yang J, Wild AT, Wu WH, Shah R, Danussi C, Riggins GJ, Kannan K, Sulman EP, Chan TA, Huse JT (2019) G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma. Nat Commun 10:943. https://doi.org/10.1038/s41467-019-08905-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fazal Salom J, Bjerke L, Carvalho D, Boult J, Mackay A, Pemberton H, Molinari V, Clarke M, Vinci M, Carceller F, Marshall L, Moore A, Montero Carcaboso A, Lord C, Robinson S, Hargrave D, Jones C (2018) PDTM-33. ATRX LOSS CONFERS ENHANCED SENSITIVITY TO COMBINED PARP INHIBITION AND RADIOTHERAPY IN PAEDIATRIC GLIOBLASTOMA MODELS. Neuro-Oncology 20:vi210–vi211. https://doi.org/10.1093/neuonc/noy148.873

    Article  PubMed Central  Google Scholar 

  33. Danussi C, Singh A, Pinnamaneni P, Fisher G, Picketts D, Kannan K, Rao A, Rai K, Huse J (2019) GENE-34. THERAPEUTICALLY TARGETING EPIGENOMIC AND TRANSCRIPTIONAL DYSFUNCTION IN ATRX-DEFICIENT GLIOMA. Neuro-Oncology 21:vi104–vi105. https://doi.org/10.1093/neuonc/noz175.436

    Article  PubMed Central  Google Scholar 

  34. Danielsson A, Barreau K, Kling T, Tisell M, Carén H (2020) Accumulation of DNA methylation alterations in paediatric glioma stem cells following fractionated dose irradiation. Clinical Epigenet 12:26. https://doi.org/10.1186/s13148-020-0817-8

    Article  CAS  Google Scholar 

  35. Torre M, Meredith DM, Dubuc A, Solomon DA, Perry A, Vasudevaraja V, Serrano J, Snuderl M, Ligon KL, Alexandrescu S (2019) Recurrent EP300-BCOR fusions in pediatric gliomas with distinct clinicopathologic features. J Neuropathol Exp Neurol 78:305–314. https://doi.org/10.1093/jnen/nlz011

    Article  CAS  PubMed  Google Scholar 

  36. Paugh BS, Broniscer A, Qu C, Miller CP, Zhang J, Tatevossian RG, Olson JM, Geyer JR, Chi SN, da Silva NS, Onar-Thomas A, Baker JN, Gajjar A, Ellison DW, Baker SJ (2011) Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 29:3999–4006. https://doi.org/10.1200/JCO.2011.35.5677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bredel M, Pollack IF, Hamilton RL, James CD (1999) Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin Cancer Res 5:1786–1792

    CAS  PubMed  Google Scholar 

  38. Geoerger B, Hargrave D, Thomas F, Ndiaye A, Frappaz D, Andreiuolo F, Varlet P, Aerts I, Riccardi R, Jaspan T, Chatelut E, Le Deley MC, Paoletti X, Saint-Rose C, Leblond P, Morland B, Gentet JC, Méresse V, Vassal G, Consortium IITfCwCE (2011) Innovative Therapies for Children with Cancer pediatric phase I study of erlotinib in brainstem glioma and relapsing/refractory brain tumors. NeuroOncology 13:109–118. https://doi.org/10.1093/neuonc/noq141

    Article  CAS  Google Scholar 

  39. Qaddoumi I, Kocak M, Pai Panandiker AS, Armstrong GT, Wetmore C, Crawford JR, Lin T, Boyett JM, Kun LE, Boop FA, Merchant TE, Ellison DW, Gajjar A, Broniscer A (2014) Phase II trial of erlotinib during and after radiotherapy in children with newly diagnosed high-grade gliomas. Front Oncol 4:67. https://doi.org/10.3389/fonc.2014.00067

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pollack IF, Stewart CF, Kocak M, Poussaint TY, Broniscer A, Banerjee A, Douglas JG, Kun LE, Boyett JM, Geyer JR (2011) A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro Oncol 13:290–297. https://doi.org/10.1093/neuonc/noq199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bartels U, Wolff J, Gore L, Dunkel I, Gilheeney S, Allen J, Goldman S, Yalon M, Packer RJ, Korones DN, Smith A, Cohen K, Kuttesch J, Strother D, Baruchel S, Gammon J, Kowalski M, Bouffet E (2014) Phase 2 study of safety and efficacy of nimotuzumab in pediatric patients with progressive diffuse intrinsic pontine glioma. Neuro Oncol 16:1554–1559. https://doi.org/10.1093/neuonc/nou091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fleischhack G, Massimino M, Warmuth-Metz M, Khuhlaeva E, Janssen G, Graf N, Rutkowski S, Beilken A, Schmid I, Biassoni V, Gorelishev SK, Kramm C, Reinhard H, Schlegel PG, Kortmann RD, Reuter D, Bach F, Iznaga-Escobar NE, Bode U (2019) Nimotuzumab and radiotherapy for treatment of newly diagnosed diffuse intrinsic pontine glioma (DIPG): a phase III clinical study. J Neurooncol 143:107–113. https://doi.org/10.1007/s11060-019-03140-z

    Article  CAS  PubMed  Google Scholar 

  43. Furnari FB, Cloughesy TF, Cavenee WK, Mischel PS (2015) Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 15:302–310. https://doi.org/10.1038/nrc3918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wetmore C, Daryani VM, Billups CA, Boyett JM, Leary S, Tanos R, Goldsmith KC, Stewart CF, Blaney SM, Gajjar A (2016) Phase II evaluation of sunitinib in the treatment of recurrent or refractory high-grade glioma or ependymoma in children: a children's Oncology Group Study ACNS1021. Cancer Med 5:1416–1424. https://doi.org/10.1002/cam4.713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Broniscer A, Jia S, Mandrell B, Hamideh D, Huang J, Onar-Thomas A, Gajjar A, Raimondi SC, Tatevossian RG, Stewart CF (2018) Phase 1 trial, pharmacokinetics, and pharmacodynamics of dasatinib combined with crizotinib in children with recurrent or progressive high-grade and diffuse intrinsic pontine glioma. Pediatr Blood Cancer 65:e27035. https://doi.org/10.1002/pbc.27035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Becher OJ, Millard NE, Modak S, Kushner BH, Haque S, Spasojevic I, Trippett TM, Gilheeney SW, Khakoo Y, Lyden DC, De Braganca KC, Kolesar JM, Huse JT, Kramer K, Cheung NV, Dunkel IJ (2017) A phase I study of single-agent perifosine for recurrent or refractory pediatric CNS and solid tumors. PLoS ONE 12:e0178593. https://doi.org/10.1371/journal.pone.0178593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Becher OJ, Gilheeney SW, Khakoo Y, Lyden DC, Haque S, De Braganca KC, Kolesar JM, Huse JT, Modak S, Wexler LH, Kramer K, Spasojevic I, Dunkel IJ (2017) A phase I study of perifosine with temsirolimus for recurrent pediatric solid tumors. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.26409

    Article  PubMed  Google Scholar 

  48. Fouladi M, Laningham F, Wu J, O'Shaughnessy MA, Molina K, Broniscer A, Spunt SL, Luckett I, Stewart CF, Houghton PJ, Gilbertson RJ, Furman WL (2007) Phase I study of everolimus in pediatric patients with refractory solid tumors. J Clin Oncol 25:4806–4812. https://doi.org/10.1200/JCO.2007.11.4017

    Article  CAS  PubMed  Google Scholar 

  49. Geoerger B, Kieran MW, Grupp S, Perek D, Clancy J, Krygowski M, Ananthakrishnan R, Boni JP, Berkenblit A, Spunt SL (2012) Phase II trial of temsirolimus in children with high-grade glioma, neuroblastoma and rhabdomyosarcoma. Eur J Cancer 48:253–262. https://doi.org/10.1016/j.ejca.2011.09.021

    Article  CAS  PubMed  Google Scholar 

  50. Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13:140–156. https://doi.org/10.1038/nrd4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chi AS, Tarapore RS, Hall MD, Shonka N, Gardner S, Umemura Y, Sumrall A, Khatib Z, Mueller S, Kline C, Zaky W, Khatua S, Weathers SP, Odia Y, Niazi TN, Daghistani D, Cherrick I, Korones D, Karajannis MA, Kong XT, Minturn J, Waanders A, Arillaga-Romany I, Batchelor T, Wen PY, Merdinger K, Schalop L, Stogniew M, Allen JE, Oster W, Mehta MP (2019) Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J Neurooncol 145:97–105. https://doi.org/10.1007/s11060-019-03271-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ishizawa J, Zarabi SF, Davis RE, Halgas O, Nii T, Jitkova Y, Zhao R, St-Germain J, Heese LE, Egan G, Ruvolo VR, Barghout SH, Nishida Y, Hurren R, Ma W, Gronda M, Link T, Wong K, Mabanglo M, Kojima K, Borthakur G, MacLean N, Ma MCJ, Leber AB, Minden MD, Houry W, Kantarjian H, Stogniew M, Raught B, Pai EF, Schimmer AD, Andreeff M (2019) Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality. Cancer Cell 35:721–737.e729. https://doi.org/10.1016/j.ccell.2019.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y, Zhu X, Qu C, Chen X, Zhang J, Easton J, Edmonson M, Ma X, Lu C, Nagahawatte P, Hedlund E, Rusch M, Pounds S, Lin T, Onar-Thomas A, Huether R, Kriwacki R, Parker M, Gupta P, Becksfort J, Wei L, Mulder HL, Boggs K, Vadodaria B, Yergeau D, Russell JC, Ochoa K, Fulton RS, Fulton LL, Jones C, Boop FA, Broniscer A, Wetmore C, Gajjar A, Ding L, Mardis ER, Wilson RK, Taylor MR, Downing JR, Ellison DW, Baker SJ (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450. https://doi.org/10.1038/ng.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hoeman CM, Cordero FJ, Hu G, Misuraca K, Romero MM, Cardona HJ, Nazarian J, Hashizume R, McLendon R, Yu P, Procissi D, Gadd S, Becher OJ (2019) ACVR1 R206H cooperates with H3.1K27M in promoting diffuse intrinsic pontine glioma pathogenesis. Nat Commun 10:1023. https://doi.org/10.1038/s41467-019-08823-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsoli M, Liu J, Franshaw L, Shen H, Cheng C, Jung M, Joshi S, Ehteda A, Khan A, Montero-Carcabosso A, Dilda PJ, Hogg P, Ziegler DS (2018) Dual targeting of mitochondrial function and mTOR pathway as a therapeutic strategy for diffuse intrinsic pontine glioma. Oncotarget 9:7541–7556. https://doi.org/10.18632/oncotarget.24045

    Article  PubMed  PubMed Central  Google Scholar 

  56. Miyahara H, Yadavilli S, Natsumeda M, Rubens JA, Rodgers L, Kambhampati M, Taylor IC, Kaur H, Asnaghi L, Eberhart CG, Warren KE, Nazarian J, Raabe EH (2017) The dual mTOR kinase inhibitor TAK228 inhibits tumorigenicity and enhances radiosensitization in diffuse intrinsic pontine glioma. Cancer Lett 400:110–116. https://doi.org/10.1016/j.canlet.2017.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Flannery PC, DeSisto JA, Amani V, Venkataraman S, Lemma RT, Prince EW, Donson A, Moroze EE, Hoffman L, Levy JMM, Foreman N, Vibhakar R, Green AL (2018) Preclinical analysis of MTOR complex 1/2 inhibition in diffuse intrinsic pontine glioma. Oncol Rep 39:455–464. https://doi.org/10.3892/or.2017.6122

    Article  CAS  PubMed  Google Scholar 

  58. Pal S, Kozono D, Yang X, Fendler W, Fitts W, Ni J, Alberta JA, Zhao J, Liu KX, Bian J, Truffaux N, Weiss WA, Resnick AC, Bandopadhayay P, Ligon KL, DuBois SG, Mueller S, Chowdhury D, Haas-Kogan DA (2018) Dual HDAC and PI3K inhibition abrogates NFκB- and FOXM1-mediated DNA damage response to radiosensitize pediatric high-grade gliomas. Cancer Res 78:4007–4021. https://doi.org/10.1158/0008-5472.CAN-17-3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S, Gillespie SM, Ni J, Duveau DY, Morris PJ, Zhao JJ, Thomas CJ, Monje M (2017) Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549:533–537. https://doi.org/10.1038/nature24014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Castel D, Kergrohen T, Tauziède-Espariat A, Mackay A, Ghermaoui S, Lechapt E, Pfister SM, Kramm CM, Boddaert N, Blauwblomme T, Puget S, Beccaria K, Jones C, Jones DTW, Varlet P, Grill J, Debily M-A (2020) Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3–K27M mutation. Acta Neuropathol. https://doi.org/10.1007/s00401-020-02142-w

    Article  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge support from the MD Anderson Cancer Center CPRIT-CURE Training Program (to Y.S.), the Center for Cancer Epigenetics at M.D. Anderson and Schissler Foundation Fellowship (to C.P.B.), and from the National Institutes of Health: R21 NS093387 (to J.C.); R61 NS NS111058 (to J.C.) (ii) Brain Tumor SPORE P50 CA127001 (Developmental Research Project to JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joya Chandra.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Bailey, C.P., Sadighi, Z. et al. Pediatric high-grade glioma: aberrant epigenetics and kinase signaling define emerging therapeutic opportunities. J Neurooncol 150, 17–26 (2020). https://doi.org/10.1007/s11060-020-03546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03546-0

Keywords

Navigation