Skip to main content

Advertisement

Log in

High levels of c-Met is associated with poor prognosis in glioblastoma

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The tyrosine kinase receptor c-Met has been suggested to be involved in crucial parts of glioma biology like tumor stemness, growth and invasion. The aim of this study was to investigate the prognostic value of c-Met in a population-based glioma patient cohort. Tissue samples from 238 patients with WHO grade I, II, III and IV tumors were analyzed using immunohistochemical staining and advanced image analysis. Strong c-Met expression was found in tumor cells, blood vessels, and peri-necrotic areas. At the subcellular level, c-Met was identified in the cytoplasm and in the cell membrane. Measurements of high c-Met intensity correlated with high WHO grade (p = 0.006) but no association with survival was observed in patients with WHO grade II (p = 0.09) or III (p = 0.17) tumors. High expression of c-Met was associated with shorter overall survival in patients with glioblastoma multiforme (p = 0.03). However the prognostic effect of c-Met in glioblastomas was time-dependent and only observed in patients who survived more than 8.5 months, and not within the first 8.5 months after diagnosis. This was significant in multivariate analysis (HR 1.99, 95 % CI 1.29–3.08, p = 0.002) adjusted for treatment and the clinical variables age (HR 1.01, 95 % CI 0.99–1.03, p = 0.30), performance status (HR 1.34, 95 % CI 1.17–1.53, p < 0.001), and tumor crossing midline (HR 1.28, 95 % CI 0.79–2.07, p = 0.29). In conclusion, this study showed that high levels of c-Met holds unfavorable prognostic value in glioblastomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. New Engl J Med 359(5):492–507. doi:10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  2. Organ SL, Tsao MS (2011) An overview of the c-MET signaling pathway. Ther Adv Med Oncol 3(1 Suppl):S7–S19. doi:10.1177/1758834011422556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Maulik G, Kijima T, Ma PC, Ghosh SK, Lin J, Shapiro GI, Schaefer E, Tibaldi E, Johnson BE, Salgia R (2002) Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res 8(2):620–627

    CAS  PubMed  Google Scholar 

  4. Beviglia L, Matsumoto K, Lin CS, Ziober BL, Kramer RH (1997) Expression of the c-Met/HGF receptor in human breast carcinoma: correlation with tumor progression. Int J Cancer 74(3):301–309

    Article  CAS  PubMed  Google Scholar 

  5. Humphrey PA, Zhu X, Zarnegar R, Swanson PE, Ratliff TL, Vollmer RT, Day ML (1995) Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am J Pathol 147(2):386–396

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E (1997) Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma. Hepatology 25(4):862–866. doi:10.1002/hep.510250413

    Article  CAS  PubMed  Google Scholar 

  7. Abounader R, Laterra J (2005) Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro-oncology 7(4):436–451. doi:10.1215/S1152851705000050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3(4):347–361

    Article  PubMed  Google Scholar 

  9. Joo KM, Jin J, Kim E, Kim KH, Kim Y, Kang BG, Kang YJ, Lathia JD, Cheong KH, Song PH, Kim H, Seol HJ, Kong DS, Lee JI, Rich JN, Lee J, Nam DH (2012) MET signaling regulates glioblastoma stem cells. Cancer Res 72(15):3828–3838. doi:10.1158/0008-5472.CAN-11-3760

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Li A, Glas M, Lal B, Ying M, Sang Y, Xia S, Trageser D, Guerrero-Cazares H, Eberhart CG, Quinones-Hinojosa A, Scheffler B, Laterra J (2011) c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci USA 108(24):9951–9956. doi:10.1073/pnas.1016912108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lal B, Xia S, Abounader R, Laterra J (2005) Targeting the c-Met pathway potentiates glioblastoma responses to gamma-radiation. Clin Cancer Res 11(12):4479–4486. doi:10.1158/1078-0432.CCR-05-0166

    Article  CAS  PubMed  Google Scholar 

  12. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE, Ligon KL, Brennan C, Chin L, DePinho RA (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318(5848):287–290. doi:10.1126/science.1142946

    Article  CAS  PubMed  Google Scholar 

  13. Liu W, Fu Y, Xu S, Ding F, Zhao G, Zhang K, Du C, Pang B, Pang Q (2011) c-Met expression is associated with time to recurrence in patients with glioblastoma multiforme. J Clin Neurosci 18(1):119–121. doi:10.1016/j.jocn.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  14. Chi AS, Batchelor TT, Kwak EL, Clark JW, Wang DL, Wilner KD, Louis DN, Iafrate AJ (2012) Rapid radiographic and clinical improvement after treatment of a MET-amplified recurrent glioblastoma with a mesenchymal-epithelial transition inhibitor. J Clin Oncol 30(3):e30–e33. doi:10.1200/JCO.2011.38.4586

    Article  PubMed  Google Scholar 

  15. Olmez OF, Cubukcu E, Evrensel T, Kurt M, Avci N, Tolunay S, Bekar A, Deligonul A, Hartavi M, Alkis N, Manavoglu O (2014) The immunohistochemical expression of c-Met is an independent predictor of survival in patients with glioblastoma multiforme. Clin Transl Oncol 16(2):173–177. doi:10.1007/s12094-013-1059-4

    Article  CAS  PubMed  Google Scholar 

  16. Kong DS, Song SY, Kim DH, Joo KM, Yoo JS, Koh JS, Dong SM, Suh YL, Lee JI, Park K, Kim JH, Nam DH (2009) Prognostic significance of c-Met expression in glioblastomas. Cancer 115(1):140–148. doi:10.1002/cncr.23972

    Article  PubMed  Google Scholar 

  17. Dahlrot RH, Hansen S, Herrstedt J, Schroder HD, Hjelmborg J, Kristensen BW (2013) Prognostic value of Musashi-1 in gliomas. J Neurooncol 115(3):453–461. doi:10.1007/s11060-013-1246-8

    Article  CAS  PubMed  Google Scholar 

  18. Hermansen SK, Dahlrot RH, Nielsen BS, Hansen S, Kristensen BW (2013) MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas. J Neurooncol 111(1):71–81. doi:10.1007/s11060-012-0992-3

    Article  CAS  PubMed  Google Scholar 

  19. Lathia JD, Li M, Sinyuk M, Alvarado AG, Flavahan WA, Stoltz K, Rosager AM, Hale J, Hitomi M, Gallagher J, Wu Q, Martin J, Vidal JG, Nakano I, Dahlrot RH, Hansen S, McLendon RE, Sloan AE, Bao S, Hjelmeland AB, Carson CT, Naik UP, Kristensen B, Rich JN (2014) High-throughput flow cytometry screening reveals a role for junctional adhesion molecule a as a cancer stem cell maintenance factor. Cell Rep 6(1):117–129. doi:10.1016/j.celrep.2013.11.043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed Central  PubMed  Google Scholar 

  21. Dahlrot RH, Kristensen BW, Hjelmborg J, Herrstedt J, Hansen S (2013) A population-based study of high-grade gliomas and mutated isocitrate dehydrogenase 1. Int J Clin Exp Pathol 6(1):31–40

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Dahlrot RH, Kristensen BW, Hjelmborg J, Herrstedt J, Hansen S (2013) A population-based study of low-grade gliomas and mutated isocitrate dehydrogenase 1 (IDH1). J Neurooncol 114(3):309–317. doi:10.1007/s11060-013-1186-3

    Article  CAS  PubMed  Google Scholar 

  23. Jensen SS, Aaberg-Jessen C, Andersen C, Schroder HD, Kristensen BW (2013) Glioma spheroids obtained via ultrasonic aspiration are viable and express stem cell markers: a new tissue resource for glioma research. Neurosurgery 73(5):868–886. doi:10.1227/NEU.0000000000000118 discussion 886

    Article  PubMed  Google Scholar 

  24. https://tools.lifetechnologies.com/content/sfs/manuals/nupage_tech_man.pdf

  25. Eckerich C, Zapf S, Fillbrandt R, Loges S, Westphal M, Lamszus K (2007) Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer 121(2):276–283. doi:10.1002/ijc.22679

    Article  CAS  PubMed  Google Scholar 

  26. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82. doi:10.1016/j.ccr.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  27. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6):501–513. doi:10.1016/j.ccr.2009.03.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Martens T, Schmidt NO, Eckerich C, Fillbrandt R, Merchant M, Schwall R, Westphal M, Lamszus K (2006) A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 12(20 Pt 1):6144–6152. doi:10.1158/1078-0432.CCR-05-1418

    Article  CAS  PubMed  Google Scholar 

  29. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848. doi:10.1158/0008-5472.CAN-06-1010

    Article  CAS  PubMed  Google Scholar 

  30. Nabeshima K, Shimao Y, Sato S, Kataoka H, Moriyama T, Kawano H, Wakisaka S, Koono M (1997) Expression of c-Met correlates with grade of malignancy in human astrocytic tumours: an immunohistochemical study. Histopathology 31(5):436–443

    Article  CAS  PubMed  Google Scholar 

  31. Moriyama T, Kataoka H, Kawano H, Yokogami K, Nakano S, Goya T, Uchino H, Koono M, Wakisaka S (1998) Comparative analysis of expression of hepatocyte growth factor and its receptor, c-met, in gliomas, meningiomas and schwannomas in humans. Cancer Lett 124(2):149–155

    Article  CAS  PubMed  Google Scholar 

  32. Pierscianek D, Kim YH, Motomura K, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K, Wrede K, Nakazato Y, Tanaka Y, Mariani L, Vital A, Sure U, Ohgaki H (2013) MET gain in diffuse astrocytomas is associated with poorer outcome. Brain Pathol 23(1):13–18. doi:10.1111/j.1750-3639.2012.00609.x

    Article  CAS  PubMed  Google Scholar 

  33. Boccaccio C, Comoglio PM (2006) Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 6(8):637–645. doi:10.1038/nrc1912

    Article  CAS  PubMed  Google Scholar 

  34. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284. doi:10.1016/j.bbamcr.2006.10.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Bowers DC, Fan S, Walter KA, Abounader R, Williams JA, Rosen EM, Laterra J (2000) Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res 60(15):4277–4283

    CAS  PubMed  Google Scholar 

  36. Guessous F, Zhang Y, diPierro C, Marcinkiewicz L, Sarkaria J, Schiff D, Buchanan S, Abounader R (2010) An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth. Anti-Cancer Agents Med Chem 10(1):28–35

    Article  CAS  Google Scholar 

  37. Rath P, Lal B, Ajala O, Li Y, Xia S, Kim J, Laterra J (2013) In vivo c-Met pathway inhibition depletes human glioma xenografts of tumor-propagating stem-like cells. Transl Oncol 6(2):104–111

    Article  PubMed Central  PubMed  Google Scholar 

  38. Wen PY, Schiff D, Cloughesy TF, Raizer JJ, Laterra J, Smitt M, Wolf M, Oliner KS, Anderson A, Zhu M, Loh E, Reardon DA (2011) A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro-oncology 13(4):437–446. doi:10.1093/neuonc/noq198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA, Resau JH, Vande Woude GF (1997) Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57(23):5391–5398

    CAS  PubMed  Google Scholar 

  40. Xie Q, Bradley R, Kang L, Koeman J, Ascierto ML, Worschech A, De Giorgi V, Wang E, Kefene L, Su Y, Essenburg C, Kaufman DW, DeKoning T, Enter MA, O’Rourke TJ, Marincola FM, Vande Woude GF (2012) Hepatocyte growth factor (HGF) autocrine activation predicts sensitivity to MET inhibition in glioblastoma. Proc Natl Acad Sci USA 109(2):570–575. doi:10.1073/pnas.1119059109

    Article  PubMed Central  PubMed  Google Scholar 

  41. Chi AS, Batchelor TT, Dias-Santagata D, Borger D, Stiles CD, Wang DL, Curry WT, Wen PY, Ligon KL, Ellisen L, Louis DN, Iafrate AJ (2012) Prospective, high-throughput molecular profiling of human gliomas. J Neurooncol 110(1):89–98. doi:10.1007/s11060-012-0938-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Cancer Genome Atlas Research N (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. doi:10.1038/nature07385

    Article  Google Scholar 

  43. Spigel DR, Ervin TJ, Ramlau RA, Daniel DB, Goldschmidt JH Jr, Blumenschein GR Jr, Krzakowski MJ, Robinet G, Godbert B, Barlesi F, Govindan R, Patel T, Orlov SV, Wertheim MS, Yu W, Zha J, Yauch RL, Patel PH, Phan SC, Peterson AC (2013) Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol 31(32):4105–4114. doi:10.1200/JCO.2012.47.4189

    Article  CAS  PubMed  Google Scholar 

  44. Yap TA, Olmos D, Brunetto AT, Tunariu N, Barriuso J, Riisnaes R, Pope L, Clark J, Futreal A, Germuska M, Collins D, deSouza NM, Leach MO, Savage RE, Waghorne C, Chai F, Garmey E, Schwartz B, Kaye SB, de Bono JS (2011) Phase I trial of a selective c-MET inhibitor ARQ 197 incorporating proof of mechanism pharmacodynamic studies. J Clin Oncol 29(10):1271–1279. doi:10.1200/JCO.2010.31.0367

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the excellent laboratory work by the technicians Helle Wohlleben and Tanja Dreehsen Højgaard. This work was supported by the Cancer Foundation, the Carl J. Becker’s Foundation, the Jacob and Olga Madsen Foundation, the Danish Cancer Research Foundation, the Karen A. Tolstrup Foundation, and the Beckett Foundation.

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Below is the link to the electronic supplementary material.

11060_2015_1723_MOESM1_ESM.tif

C-Met intensity levels in ten GBMs. No significant differences between intensities were obtained by sampling 5, 10, 15 or 20 % of the tumor area. However sampling 5 % of the tumor tissue did not provide at least five usable pictures in small tumors, and sampling 15 or 20 % of the tumor tissue was time consuming. Consequently, sampling of 10 % of the tumor tissue was chosen for the whole cohort. The data are shown as mean with SEM.

Supplementary material 1 (TIFF 3273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petterson, S.A., Dahlrot, R.H., Hermansen, S.K. et al. High levels of c-Met is associated with poor prognosis in glioblastoma. J Neurooncol 122, 517–527 (2015). https://doi.org/10.1007/s11060-015-1723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1723-3

Keywords

Navigation