Skip to main content

Advertisement

Log in

MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

High-grade gliomas are some of the most lethal forms of human cancer, and new clinical biomarkers and therapeutic targets are highly needed. MicroRNAs (miRNAs), a group of short noncoding RNAs, hold great potential as new biomarkers and targets as they are commonly deregulated in a variety of diseases including gliomas. MicroRNA-21 (miR-21) is the most consistently overexpressed miRNA in several cancers including gliomas and is therefore very promising as a useful clinical biomarker and therapeutic target. To better understand the role of miR-21 in gliomas, paraffin-embedded glioma tissue samples from 193 patients with grade I, II, III, and IV tumors were analyzed by in situ hybridization (ISH) using LNA-DNA chimeric probes. We found miR-21 expression in tumor cells and tumor-associated blood vessels, whereas no expression was seen in adjacent normal brain parenchyma. Using advanced image analysis we obtained quantitative estimates reflecting the miR-21 expression levels in each of these compartments. The miR-21 levels correlated significantly with grade [p = 0.027, r s = 0.161, 95 % confidence interval (CI), 0.015–0.301] with the highest levels measured in glioblastomas. Only tumor cell miR-21 was associated with poor prognosis when adjusting for known clinical parameters (age, grade, and sex) in a multivariate analysis [p = 0.049, hazard ratio (HR) = 1.545, 95 % CI, 1.002–2.381]. In conclusion, we have shown that miR-21 is located in both tumor cells and tumor blood vessels and that its level in the tumor cell compartment holds unfavorable prognostic value in gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD et al. (2007) WHO classification of tumours of the central nervous system. 4th edn. International Agency for Research on Cancer (IARC), Lyon

  2. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  3. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  PubMed  CAS  Google Scholar 

  4. Friedman RC, Farh KK, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed  CAS  Google Scholar 

  5. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    Article  PubMed  CAS  Google Scholar 

  6. Zhi F, Chen X, Wang S et al (2010) The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. Eur J Cancer 46:1640–1649

    Article  PubMed  CAS  Google Scholar 

  7. Visone R, Croce CM (2009) miRNAs and cancer. Am J Pathol 174:1131–1138

    Article  PubMed  CAS  Google Scholar 

  8. Selcuklu SD, Donoghue MT, Spillane C (2009) miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 37:918–925

    Article  PubMed  CAS  Google Scholar 

  9. Chen Y, Liu W, Chao T et al (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205

    Article  PubMed  CAS  Google Scholar 

  10. Lu Z, Liu M, Stribinskis V et al (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379

    Article  PubMed  CAS  Google Scholar 

  11. Frankel LB, Christoffersen NR, Jacobsen A et al (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033

    Article  PubMed  CAS  Google Scholar 

  12. Pan Q, Luo X, Chegini N (2010) microRNA 21: response to hormonal therapies and regulatory function in leiomyoma, transformed leiomyoma and leiomyosarcoma cells. Mol Hum Reprod 16:215–227

    Article  PubMed  CAS  Google Scholar 

  13. Zhu S, Si ML, Wu H et al (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336

    Article  PubMed  CAS  Google Scholar 

  14. Kwak HJ, Kim YJ, Chun KR et al (2011) Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas. Oncogene 30:2433–2442

    Article  PubMed  CAS  Google Scholar 

  15. Qian B, Katsaros D, Lu L et al (2009) High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Res Treat 117:131–140

    Article  PubMed  CAS  Google Scholar 

  16. Yan LX, Huang XF, Shao Q et al (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360

    Article  PubMed  CAS  Google Scholar 

  17. Schetter AJ, Leung SY, Sohn JJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

    Article  PubMed  CAS  Google Scholar 

  18. Nielsen BS, Jørgensen S, Fog JU et al (2011) High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis 28:27–38

    Article  PubMed  CAS  Google Scholar 

  19. Spahn M, Kneitz S, Scholz CJ et al (2010) Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer 127:394–403

    PubMed  CAS  Google Scholar 

  20. Markou A, Tsaroucha EG, Kaklamanis L et al (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54:1696–1704

    Article  PubMed  CAS  Google Scholar 

  21. Avissar M, McClean MD, Kelsey KT et al (2009) MicroRNA expression in head and neck cancer associates with alcohol consumption and survival. Carcinogenesis 30:2059–2063

    Article  PubMed  CAS  Google Scholar 

  22. Li J, Huang H, Sun L et al (2009) MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 15:3998–4008

    Article  PubMed  CAS  Google Scholar 

  23. Conti A, Aguennouz M, La TD et al (2009) miR-21 and 221 upregulation and miR-181b downregulation in human grade II–IV astrocytic tumors. J Neurooncol 93:325–332

    Article  PubMed  CAS  Google Scholar 

  24. Shi L, Chen J, Yang J et al (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264

    Article  PubMed  CAS  Google Scholar 

  25. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  PubMed  CAS  Google Scholar 

  26. Rao SA, Santosh V, Somasundaram K (2010) Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma. Mod Pathol 23:1404–1417

    Article  PubMed  CAS  Google Scholar 

  27. Sulman EP, Aldape K (2011) The use of global profiling in biomarker development for gliomas. Brain Pathol 21:88–95

    Article  PubMed  CAS  Google Scholar 

  28. Colman H, Zhang L, Sulman EP et al (2010) A multigene predictor of outcome in glioblastoma. Neuro Oncol 12:49–57

    Article  PubMed  CAS  Google Scholar 

  29. Jørgensen S, Baker A, Møller S et al (2010) Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods 52:375–381

    Article  PubMed  Google Scholar 

  30. Rask L, Balslev E, Jørgensen S et al (2011) High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer. APMIS 119:663–673

    Article  PubMed  Google Scholar 

  31. Yamamichi N, Shimomura R, Inada K et al (2009) Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development. Clin Cancer Res 15:4009–4016

    Article  PubMed  CAS  Google Scholar 

  32. Fassan M, Pizzi M, Giacomelli L et al (2011) PDCD4 nuclear loss inversely correlates with miR-21 levels in colon carcinogenesis. Virchows Arch 458:413–419

    Article  PubMed  CAS  Google Scholar 

  33. Sempere LF, Preis M, Yezefski T et al (2010) Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered MicroRNA expression in solid tumors. Clin Cancer Res 16:4246–4255

    Article  PubMed  CAS  Google Scholar 

  34. Qi L, Bart J, Tan LP et al (2009) Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer 9:163

    Article  PubMed  Google Scholar 

  35. Sempere LF, Christensen M, Silahtaroglu A et al (2007) Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67:11612–11620

    Article  PubMed  CAS  Google Scholar 

  36. du Rieu MC, Torrisani J, Selves J et al (2010) MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin Chem 56:603–612

    Article  PubMed  Google Scholar 

  37. Dyrskjøt L, Ostenfeld MS, Bramsen JB et al (2009) Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res 69:4851–4860

    Article  PubMed  Google Scholar 

  38. Voellenkle C, van Rooij J, Guffanti A et al (2012) Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. RNA 18:472–484

    Article  PubMed  CAS  Google Scholar 

  39. Kuehbacher A, Urbich C, Zeiher AM et al (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101:59–68

    Article  PubMed  CAS  Google Scholar 

  40. Suarez Y, Fernandez-Hernando C, Pober JS et al (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100:1164–1173

    Article  PubMed  CAS  Google Scholar 

  41. Liao JY, Ma LM, Guo YH et al (2010) Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS ONE 5:e10563

    Article  PubMed  Google Scholar 

  42. Gravgaard KH, Lyng MB, Laenkholm AV et al (2012) The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer. Breast Cancer Res Treat 134:207–217

    Article  PubMed  CAS  Google Scholar 

  43. Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide element directs microRNA nuclear import. Science 315:97–100

    Article  PubMed  CAS  Google Scholar 

  44. Place RF, Li LC, Pookot D et al (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105:1608–1613

    Article  PubMed  CAS  Google Scholar 

  45. Kim DH, Saetrom P, Snove O Jr et al (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 105:16230–16235

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful for the technical support and advice from Department of Biostatistics, University of Southern Denmark, Odense. The work was supported by the Region of Southern Denmark, The Research Council for Health and Disease (FSS), The grant of Else and Åge Grønbæk-Olsen, The Foundation of Merchant M. Kristian Kjær and wife Margrethe Kjær born la Cour-Holmen, The grant of fmr. Dir. Leo Nielsen and wife Karen Margrethe Nielsen for medical basic research, The Beckett Foundation, Research Foundation of University of Southern Denmark, The Foundation of Fam. Hede Nielsen, The Foundation of Margot and John Friberg, The Foundation of Dir. Jacob Madsen and wife Olga Madsen, The grant of Carl and Ellen Hertz for Danish medicine and science, and The Foundation of engineer Bent Bøgh and wife Inge Bøgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjarne Winther Kristensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermansen, S.K., Dahlrot, R.H., Nielsen, B.S. et al. MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas. J Neurooncol 111, 71–81 (2013). https://doi.org/10.1007/s11060-012-0992-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0992-3

Keywords

Navigation