Skip to main content
Log in

Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Rare earths orthovanadates (REVO4) doped with luminescent lanthanide ions (Ln3+) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO4 3− groups to Eu3+ ions. In the presented study, Fe3O4@SiO2@GdVO4:Eu3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO4 doped with Ln3+. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bessis M, Weed RI, Leblond PF (1973) Red cell shape red cell shape; physiology, pathology, ultrastructure. Springer, Berlin, Heidelberg, pp 1–24. doi:10.1007/978-3-642-88062-9

    Google Scholar 

  • Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374. doi:10.1021/cr8003983

    Article  Google Scholar 

  • Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin

    Book  Google Scholar 

  • Chander H (2005) Development of nanophosphors—a review. Mater Sci Eng R Rep 49:113–155. doi:10.1016/j.mser.2005.06.001

    Article  Google Scholar 

  • Chen G, Desinan S, Nechache R, Rosei R, Rosei F, Ma D (2011) Bifunctional catalytic/magnetic Ni@Ru core-shell nanoparticles. Chem Comm 47:6308–6310. doi:10.1039/C1CC10619H

    Article  Google Scholar 

  • Cheng KH, Aijmo J, Ma L, Yao M, Zhang X, Como J, Hope-Weeks LJ, Huang J, Chen W (2008) Luminescence decay dynamics and trace biomaterials detection potential of surface-functionalized nanoparticles. J Phys Chem C 112:17931–17939. doi:10.1021/jp8065647

    Article  Google Scholar 

  • Cheng Z, Ma P, Hou Z, Wang W, Dai Y, Zhai X, Lin J (2012) YVO4:Eu3+ functionalized porous silica submicrospheres as delivery carriers of doxorubicin. Dalton Trans 41:1481–1489. doi:10.1039/c1dt11399b

    Article  Google Scholar 

  • Corr SA, Rakovich YP, Gun’ko YK (2008) Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett 3:87–104. doi:10.1007/s11671-008-9122-8

    Article  Google Scholar 

  • Deshmukh AB, Devarapalli RR, Shelke MV (2014) Functional silicon nanostructures derived from drying-mediated self-assembly of gold nanoparticles. J Nanopart Res 16:2372. doi:10.1007/s11051-014-2372-8

    Article  Google Scholar 

  • Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2 Core/Shell Nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24:4572–4580. doi:10.1021/cm302828d

    Article  Google Scholar 

  • Dosev D, Nichkova M, Kennedy IM (2008) Inorganic lanthanide nanophosphors in biotechnology. J Nanosci Nanotechnol 8:1052–1067. doi:10.1166/jnn.2008.304

    Google Scholar 

  • Gai S, Yang P, Li C, Wang W, Dai Y, Niu N, Lin J (2010) Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Adv Funct Mater 20:1166–1172. doi:10.1002/adfm.200902274

    Article  Google Scholar 

  • Gnach A, Lipinski T, Bednarkiewicz A, Rybka J, Capobianco J (2014) Upconverting nanoparticles: assessing the toxicity. Soc. Rev, Chem. doi:10.1039/c4cs00177j

    Google Scholar 

  • Grzyb T, Runowski M, Szczeszak A, Lis S (2012a) Influence of Matrix on the luminescent and structural properties of glycerine-capped, Tb3+-doped fluoride nanocrystals. J Phys Chem C 116:17188–17196. doi:10.1021/jp3010579

    Article  Google Scholar 

  • Grzyb T, Szczeszak A, Rozowska J, Legendziewicz J, Lis S (2012b) Tunable luminescence of Sr2CeO4:M2+ (M = Ca, Mg, Ba, Zn) and Sr2CeO4:Ln3+ (Ln = Eu, Dy, Tm) nanophosphors. J Phys Chem C 116:3219–3226. doi:10.1021/jp208015z

    Article  Google Scholar 

  • Grzyb T, Runowski M, Dabrowska K, Giersig M, Lis S (2013) Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals. J Nanopart Res 15:1958–1972. doi:10.1007/s11051-013-1958-x

    Article  Google Scholar 

  • Grzyb T, Runowski M, Lis S (2014) Facile synthesis, structural and spectroscopic properties of GdF3:Ce3+, Ln3+ (Ln3+=Sm3+, Eu3+, Tb3+, Dy3+) nanocrystals with bright multicolor luminescence. J Lumin 154:479–486. doi:10.1016/j.jlumin.2014.05.020

    Article  Google Scholar 

  • Haidar ZS (2010) Bio-Inspired/-Functional colloidal core-shell polymeric-based nanosystems: technology promise in tissue engineering, bioimaging and nanomedicine. Polymers 2:323–352. doi:10.3390/polym2030323

    Article  Google Scholar 

  • Henglein A (1987) Q-particles: size quantization effects in colloidal semiconductors. Progr Colloid & Polymer Sci 73:1–4. doi:10.1007/3-798-50724-4_55

    Article  Google Scholar 

  • Holsa J (2009) Persistent luminescence beats the afterglow: 400 years of persistent luminescence. Electrochem Soc Interface Winter 18:42–45

    Google Scholar 

  • Hu H, Wang Z, Pan L (2010) Synthesis of monodisperse Fe3O4@silica core–shell microspheres and their application for removal of heavy metal ions from water. J Alloys Compd 492:656–661. doi:10.1016/j.jallcom.2009.11.204

    Article  Google Scholar 

  • Huang S, Cheng Z, Ma P, Kang X, Dai Y, Lin J (2013) Luminescent GdVO4:Eu3+ functionalized mesoporous silica nanoparticles for magnetic resonance imaging and drug delivery. Dalton Trans 42:6523–6530. doi:10.1039/c3dt33114h

    Article  Google Scholar 

  • Jasiewicz B, Mrowczynska L, Malczewska-Jaskola K (2014) Synthesis and haemolytic activity of novel salts made of nicotine alkaloids and bile acids. Bioorg Med Chem Lett 24:1104–1107. doi:10.1016/j.bmcl.2014.01.005

    Article  Google Scholar 

  • Kang X, Yang D, Dai Y, Shang M, Cheng Z, Zhang X, Lian H, Ma P, Lin J (2013a) Poly(acrylic acid) modified lanthanide-doped GdVO4 hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release. Nanoscale 5:253–261. doi:10.1039/c2nr33130f

    Article  Google Scholar 

  • Kang X, Yang D, Ma P, Dai Y, Shang M, Geng D, Cheng Z, Lin J (2013b) Fabrication of hollow and porous structured GdVO4:Dy3+ nanospheres as anticancer drug carrier and MRI contrast agent. Langmuir 29:1286–1294. doi:10.1021/la304551y

    Article  Google Scholar 

  • Li X, Yu M, Hou Z, Li G, Ma P, Wang W, Cheng Z, Lin J (2011) One-dimensional GdVO4:Ln3+ (Ln = Eu, Dy, Sm) nanofibers: Electrospinning preparation and luminescence properties. J Solid State Chem 184:141–148. doi:10.1016/j.jssc.2010.11.019

    Article  Google Scholar 

  • Limaye MV, Singh SB, Das R, Poddar P, Kulkarni SK (2011) Room temperature ferromagnetism in undoped and Fe doped ZnO nanorods: microwave-assisted synthesis. J Solid State Chem 184:391–400. doi:10.1016/j.jssc.2010.11.008

    Article  Google Scholar 

  • Liu J, Qiao SZ, Chen JS, Lou XW, Xing X, Lu GQ (2011) Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Comm. 47:12578–12591. doi:10.1039/c1cc13658e

    Article  Google Scholar 

  • Lou L, Yu K, Zhang Z, Li B, Zhu J, Wang Y, Huang R, Zhu Z (2011) Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling. Nanoscale 3:2315–2323. doi:10.1039/c1nr10066a

    Article  Google Scholar 

  • Lu P, Zhang J-L, Liu Y-L, Sun D-H, Liu G-X, Hong G-Y, Ni J-Z (2010) Synthesis and characteristic of the Fe3O4@SiO2@Eu(DBM)3.2H2O/SiO2 luminomagnetic microspheres with core-shell structure. Talanta 82:450–457. doi:10.1016/j.talanta.2010.04.052

    Article  Google Scholar 

  • Ma Q, Wang J, Dong X, Yu W, Liu G (2014) Electrospinning fabrication and characterization of magnetic-upconversion fluorescent bifunctional core–shell nanofibers. J Nanopart Res 16:2239. doi:10.1007/s11051-013-2239-4

    Article  Google Scholar 

  • Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248. doi:10.1109/TMAG.1981.1061188

    Article  Google Scholar 

  • Niu N, Yang P, Liu Y, Li C, Wang D, Gai S, He F (2011) Controllable synthesis and up-conversion properties of tetragonal BaYF5:Yb/Ln (Ln = Er, Tm, and Ho) nanocrystals. J Colloid Interface Sci 362:389–396. doi:10.1016/j.jcis.2011.07.001

    Article  Google Scholar 

  • Nuñez NO, Rivera S, Alcantara D, de la Fuente JM, García-Sevillano J, Ocaña M (2013) Surface modified Eu:GdVO4 nanocrystals for optical and MRI imaging. Dalton Trans 42:10725–10734. doi:10.1039/c3dt50676b

    Article  Google Scholar 

  • Park J-N, Zhang P, Hu Y-S, McFarland EW (2010) Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion. Nanotechnology 21:225708–225716. doi:10.1088/0957-4484/21/22/225708

    Article  Google Scholar 

  • Runowski M, Grzyb T, Lis S (2011) Bifunctional luminescent and magnetic core/shell type nanostructures Fe3O4@CeF3:Tb3+/SiO2. J Rare Earths 29:1117–1122. doi:10.1016/S1002-0721(10)60609-6

    Article  Google Scholar 

  • Runowski M, Grzyb T, Lis S (2012) Magnetic and luminescent hybrid nanomaterial based on Fe3O4 nanocrystals and GdPO4:Eu3+ nanoneedles. J Nanopart Res 14:1188–1195. doi:10.1007/s11051-012-1188-7

    Article  Google Scholar 

  • Runowski M, Dabrowska K, Grzyb T, Miernikiewicz P, Lis S (2013) Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity. J Nanopart Res 15:2068–2083. doi:10.1007/s11051-013-2068-5

    Article  Google Scholar 

  • Runowski M, Ekner-Grzyb A, Mroczynska L, Balabhadra S, Grzyb T, Paczesny J, Zep A, Lis S (2014) Synthesis and organic surface modification of luminescent, lanthanide-doped core/shell nanomaterials (LnF3@SiO2@NH2@Organic Acid) for potential bioapplications: spectroscopic, structural, and in vitro cytotoxicity evaluation. Langmuir 30:9533–9543. doi:10.1021/la501107a

    Article  Google Scholar 

  • Selvan ST, Tan TTY, Yi DK, Jana NR (2009) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26:11631–11641. doi:10.1021/la903512m

    Article  Google Scholar 

  • Shanta Singh N, Kulkarni H, Pradhan L, Bahadur D (2013) A multifunctional biphasic suspension of mesoporous silica encapsulated with YVO4:Eu3+ and Fe3O4 nanoparticles: synergistic effect towards cancer therapy and imaging. Nanotechnology 24:065101. doi:10.1088/0957-4484/24/6/065101

    Article  Google Scholar 

  • Tong L, Shi J, Ren X, Li Q, Ding H, Yang H (2013) Multifunctional nanocomposites with different coupling agents: synthesis, luminescent and magnetic properties. J Nanopart Res 15:1627. doi:10.1007/s11051-013-1627-0

    Article  Google Scholar 

  • Wang Y, Qin W, Zhang J, Cao C, LU S, Ren X (2009) Photoluminescence of colloidal YVO4:Eu/SiO2 core/shell nanocrystals. Opt Commun 282:1148–1153. doi:10.1016/j.optcom.2008.12.007

    Article  Google Scholar 

  • Wang C, Yin D, Ouyang J, Song K, Liu B, Wu M (2014) Synthesis of fluorescent and magnetic bi-functional NaLuF4-based upconversion nanocrystals. J Nanosci Nanotechnol 14:5232–5237. doi:10.1166/jnn.2014.8672

    Article  Google Scholar 

  • Wu J, Yan B (2008) Photoluminescence intensity of YxGd1−xVO4:Eu3+ dependence on hydrothermal synthesis time and variable ratio of Y/Gd. J Alloys Compd 455:485–488. doi:10.1016/j.jallcom.2007.01.162

    Article  Google Scholar 

  • Xue X, Wang F, Liu X (2011) Emerging functional nanomaterials for therapeutics. J Mater Chem 21:13107–13127. doi:10.1039/c1jm11401h

    Article  Google Scholar 

  • Yang D, Kang X, Shang M, Li G, Peng C, Li C, Lin J (2011) Size and shape controllable synthesis and luminescent properties of BaGdF5:Ce3+/Ln3+ (Ln = Sm, Dy, Eu, Tb) nano/submicrocrystals by a facile hydrothermal process. Nanoscale 3:2589–2595. doi:10.1039/c1nr10203f

    Article  Google Scholar 

  • Yin W, Zhou L, Gu Z, Tian G, Jin S, Yan L, Liu X, Xing G, Ren W, Liu F, Pan Z, Zhao Y (2012) Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging. J Mater Chem 22:6974–6981. doi:10.1039/c2jm16152d

    Article  Google Scholar 

  • Yoo J-H, Lee S-W (2014) Fabrication and characterization of quantum dots-bound hydrogels with fluorescent and temperature-sensitive functionalities. J Nanosci Nanotechnol 14:7648–7653. doi:10.1166/jnn.2014.9411

    Article  Google Scholar 

  • Zhou J, Lu Z, Shan G, Wang S, Liao Y (2014) Gadolinium complex and phosphorescent probe-modified NaDyF4 nanorods for T1- and T2-weighted MRI/CT/phosphorescence multimodality imaging. Biomaterials 35:368–377. doi:10.1016/j.biomaterials.2013.09.088

    Article  Google Scholar 

Download references

Acknowledgments

S.L., A. Sz., A.E.G, and T.G. kindly acknowledge the financial support from the National Science Centre (Grant DEC-2012/06/M/ST5/00325). M.R. gratefully acknowledges the financial support from the Polish Ministry of Science and Higher Education; scientific work was financed from the budget for science in 2012-2015 as a research project within the program called „Diamond Grant” Nr DI2011 011441. M.R. is a recipient of the scholarship from the Foundation of Adam Mickiewicz University in Poznań, for the 2014/2015 academic year. T.G. holds a scholarship from the Foundation for Polish Science for Young Scientists (FNP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szczeszak, A., Ekner-Grzyb, A., Runowski, M. et al. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates. J Nanopart Res 17, 143 (2015). https://doi.org/10.1007/s11051-015-2950-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2950-4

Keywords

Navigation