Skip to main content
Log in

A novel method for the synthesis of monodisperse gold-coated silica nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN)2]+) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]+ complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au0) proceeding by an inner sphere mechanism. The residual [Au(MeCN)2]+ complex was allowed to react with water, disproportionating into Au0 and Au(III), respectively, with the Au0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  • Andreescu D, Sau TK, Goia DV (2006) Stabilizer-free nanosized gold sols. J Colloid Interface Sci 298:742–751. doi:10.1016/j.jcis.2006.01.011

    Article  CAS  Google Scholar 

  • Bergerhoff G (1964) Preparation of copper(I) and gold(I) compounds in acetonitrile. Zeitschrift fuer Anorganische und Allgemeine Chemie 327:139–142

    Article  CAS  Google Scholar 

  • Goia DV, Matijevic E (1998) Preparation of monodispersed metal particles. New J Chem 22:1203–1215

    Article  CAS  Google Scholar 

  • Hasan M, Bethell D, Brust M (2002) The fate of sulfur-bound hydrogen on formation of self-assembled thiol monolayers on gold: 1H NMR spectroscopic evidence from solutions of gold clusters. J Am Chem Soc 124:1132–1133. doi:10.1021/ja0120577

    Article  CAS  Google Scholar 

  • Hiramatsu H, Osterloh FE (2003) pH-controlled assembly and disassembly of electrostatically linked CdSe–SiO2 and Au–SiO2 nanoparticle clusters. Langmuir 19:7003–7011. doi:10.1021/la034217t

    Article  CAS  Google Scholar 

  • Hu K-W, Jhang F-Y, Su C-H, Yeh C-S (2009) Fabrication of Gd2O(CO3)2·H2O/silica/gold hybrid particles as a bifunctional agent for MR imaging and photothermal destruction of cancer cells. J Mater Chem 19:2147–2153. doi:10.1039/B815087G

    Article  CAS  Google Scholar 

  • Johnson PR, Pratt JM, Tilley RI (1978) Experimental determination of the standard reduction potential of the gold(I) ion. J C S Chem Commun 14:606–607. doi:10.1039/C39780000606

    Article  Google Scholar 

  • Kim J-H, Chung H-W, Lee TR (2006) Preparation and characterization of palladium shells with gold and silica cores. Chem Mater 18:4115–4120. doi:10.1021/cm0528882

    Article  CAS  Google Scholar 

  • Qu Q, Peng S, Mangelings D, Hu X, Yan C (2010) Silica spheres coated with C18-modified gold nanoparticles for capillary LC and pressurized CEC separations. Electrophoresis 31:556–562. doi:10.1002/elps.200900375

    Article  CAS  Google Scholar 

  • Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K (2005) A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci 289:125–131. doi:10.1016/j.jcis.2005.02.019

    Article  CAS  Google Scholar 

  • Ruff I (1968) Extension of the “band model” to the inner-sphere mechanism of electron-transfer reactions. J Phys Chem 72:1792–1797. doi:10.1021/j100851a071

    Article  CAS  Google Scholar 

  • Salgueiriño-Maceira V, Correa-Duarte MA, Farle M, López-Quintela A, Sieradzki K, Diaz R (2006) Bifunctional gold-coated magnetic silica spheres. Chem Mater 18:2701–2706. doi:10.1021/cm0603001

    Article  Google Scholar 

  • Shi Y-L, Asefa T (2007) Tailored core–shell–shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells. Langmuir 23:9455–9462. doi:10.1021/la700863g

    Article  CAS  Google Scholar 

  • Stathis EC, Fabrikanos A (1958) Preparation of colloidal gold. Chem Ind 27:860–861

    Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. doi:10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  • Taube H, Myers H, Rich RL (1953) Observations on the mechanism of electron transfer in solution. J Am Chem Soc 75:4118–4119. doi:10.1021/ja01112a546

    Article  CAS  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1953) The formation of colloidal gold. J Phys Chem 57:670–673. doi:10.1021/j150508a015

    Article  CAS  Google Scholar 

  • Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS et al (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981–983. doi:10.1038/nature07194

    Article  CAS  Google Scholar 

  • Ueda A, Haruta M (1999) Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold catalysts. Gold Bull 32:3–11

    Article  CAS  Google Scholar 

  • Wang W, Ruan C, Gu B (2006) Development of gold-silica composite nanoparticle substrates for perchlorate detection by surface-enhanced Raman spectroscopy. Anal Chim Acta 567:121–126. doi:10.1016/j.aca.2006.01.083

    Article  CAS  Google Scholar 

  • White IM, Oveys H, Fan X (2006) Increasing the enhancement of SERS with dielectric microsphere resonators. Spectroscopy 21(36):38–42

    Google Scholar 

  • Williams DH, Fleming I (1995) Spectroscopic methods in organic chemistry, 5th edn. McGraw-Hill, Berkshire, p 69

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Loc Duong and Jin Chang for assistance with SEM imaging, Mr. Lambert Bekessy and Jin Chang for assistance with TEM images and Dr. Mark Wellard for assistance with 1H NMR along with Dr. Chris Cavallo for assistance with obtaining mass spectra and the School of Chemical and Physical Sciences of QUT for project support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric R. Waclawik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

English, M.D., Waclawik, E.R. A novel method for the synthesis of monodisperse gold-coated silica nanoparticles. J Nanopart Res 14, 650 (2012). https://doi.org/10.1007/s11051-011-0650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0650-2

Keywords

Navigation