Skip to main content
Log in

Enhanced high capacity image steganography using discrete wavelet transform and the Laplacian pyramid

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a high capacity image hiding scheme with enhanced stego image quality. This new hiding scheme utilizes a multiscale Laplacian pyramid of the cover image in the Discrete Wavelet Transform (DWT) domain. Previous work either enhanced capacity at the expense of stego quality or improved stego quality albeit at lower capacities. The proposed scheme will utilize the high-frequency bands of the DWT of the cover image for increased hiding capacity while further extending the payload capacity by hiding in the lowest level Laplacian pyramid of the DWT low-frequency band using a curve-fitting adaptive region approach in the spectral magnitude discrete cosine transform domain. The proposed scheme results in enhanced visual fidelity as well as high capacities as compared to competing methods. Comparative experimental results will show that the proposed scheme outperforms recent methods in terms of payload capacity as well as various image quality measures. Resistance to data-loss and noise tampering, geometric distortions and Checkmark attacks, and steganalysis detection attacks will further demonstrate the robustness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. http://stegsecret.sourceforge.net/

References

  1. Adelson EH, Anderson CH, Bergen JR, Burt PJ, Ogden JM (1984) Pyramid methods in image processing. RCA Eng 29(6):33–41

    Google Scholar 

  2. Amin M, Abdullkader HM, Ibrahem HM, Sakr AS (2014) A steganographic method based on dct and new quantization technique. IJ Netw Secur 16(3):214–219

    Google Scholar 

  3. Anderson RJ, Petitcolas FA (1998) On the limits of steganography. IEEE J Sel Areas Commun 16(4):474–481

    Article  Google Scholar 

  4. Avcibas I, Memon N, Sankur B (2003) Steganalysis using image quality metrics. IEEE Trans Image Process 12(2):221–229

    Article  MathSciNet  Google Scholar 

  5. Balasubramanian C, Selvakumar S, Geetha S (2014) High payload image steganography with reduced distortion using octonary pixel pairing scheme. Multimed Tools Appl 73(3):2223–2245

    Article  Google Scholar 

  6. Bandyopadhyay D, Dasgupta K, Mandal J, Dutta P (2014) A novel secure image steganography method based on chaos theory in spatial domain. Int J Secur Privacy Trust Manag (IJSPTM) 3(1):11–22

    Article  Google Scholar 

  7. Bawaneh MJ (2014) A novel approach for image steganography using LCG. Int J Comput Appl 10:102

    Google Scholar 

  8. Bhattacharyya S, Sanyal G (2012) A robust image steganography using dwt difference modulation (dwtdm). Int J Comput Netw Inf Secur 4(7):27

    Google Scholar 

  9. Bhattacharyya S, Sanyal G, Majumdar A (2009) An image based steganography model for promoting global cyber security. In: Proceedings of international conference on systemics, cybernetics and informatics, Hyderabad, India

  10. Brisbane G, Aini RS-N, Ogunbona P (2005) High-capacity steganography using a shared colour palette. IEE Proc Vis Image Signal Process 152(6):787–792

    Article  Google Scholar 

  11. Burt P, Adelson E (1983) The laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540

    Article  Google Scholar 

  12. Chang CC, Lin CC, Tseng CS, Tai WL (2007) Reversible hiding in dct-based compressed images. Inf Sci 177:2768–2786

    Article  Google Scholar 

  13. Chauhan DS, Singh AK, Kumar B, Saini J (2017) Quantization based multiple medical information watermarking for secure e-health. Multimed Tools Appl 1–13. https://doi.org/10.1007/s11042-017-4886-4

  14. Chen B, Wornell GW (2001) Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans Inf Theory 47(4):1423–1443

    Article  MathSciNet  MATH  Google Scholar 

  15. Cole E (2003) Hiding in plain sight: steganography and the art of covert communication, 1st edn. Wiley, New York

    Google Scholar 

  16. Curran K, Bailey K (2003) An evaluation of image based steganography methods. Int J Digit Evid 2(2):1–40

    Google Scholar 

  17. Fontaine C (2011) Linear congruential generator. Encyclopedia of Cryptography and Security, pp 721–721

  18. Ghebleh M, Kanso A (2014) A robust chaotic algorithm for digital image steganography. Commun Nonlinear Sci Numer Simul 19(6):1898–1907

    Article  Google Scholar 

  19. Hu J, Li T (2015) Reversible steganography using extended image interpolation technique. Comput Electr Eng 46:447–455

    Article  Google Scholar 

  20. Ibaida A, Khalil I (2013) Wavelet-based ecg steganography for protecting patient confidential information in point-of-care systems. IEEE Trans Biomed Eng 60(12):3322–3330

    Article  Google Scholar 

  21. Iwata M, Miyake K, Shiozaki A (2004) Digital steganography utilizing features of jpeg images. IEICE Trans Fundam E87-A(4):929–936

    Google Scholar 

  22. Lee Y, Chen L (2000) High capacity image steganographic model. IEE Proc Vis Image Signal Process 147(3):288–294

    Article  Google Scholar 

  23. Lin P-Y, Chan C-S (2010) Invertible secret image sharing with steganography. Pattern Recogn Lett 31(13):1887–1893

    Article  Google Scholar 

  24. Lin CC, Shiu PF (2009) Dct-based reversible data hiding scheme. In: Proceedings of the 3rd international conference on ubiquitous information management and communication (ICUIMC09), pp 327–335

  25. Lin C-C, Shiu P-F (2010) High capacity data hiding scheme for dct-based images. J Inf Hiding Multimed Signal Process 1(3):220–240

    Google Scholar 

  26. Lin CY, Chang CC, Wang YZ (2008) Reversible steganographic method with high payload for jpeg images. IEICE Trans Inf Syst 91-D(3):836–845

    Article  Google Scholar 

  27. Morkel T, Eloff JH, Olivier MS (2005) An overview of image steganography. In: ISSA, pp 1–11

  28. Padmaa M, Venkataramani Y (2010) Zig-zag pvd–a nontraditional approach. Int J Comput Appl 5(7):5–10

    Google Scholar 

  29. Pandey R, Singh A K, Kumar B, Mohan A (2016) Iris based secure nroi multiple eye image watermarking for teleophthalmology. Multimed Tools Appl 75(22):14381–14397

    Article  Google Scholar 

  30. Parul M, Rohil DH (2014) Optimized image steganography using discrete wavelet transform (dwt). Int J Recent Dev Eng Technol 2(2):75–81

    Google Scholar 

  31. Petitcolas FA, Anderson RJ, Kuhn MG (1999) Information hiding—a survey. Proc IEEE 87(7):1062–1078

    Article  Google Scholar 

  32. Pinoli J-C, Debayle J (2007) Logarithmic adaptive neighborhood image processing (lanip): introduction, connections to human brightness perception, and application issues. EURASIP J Appl Signal Process 2007(1):114–114

    MATH  Google Scholar 

  33. Qin C, Zhang X (2015) Effective reversible data hiding in encrypted image with privacy protection for image content. J Vis Commun Image Represent 31:154–164

    Article  Google Scholar 

  34. Qin C, Chang C-C, Huang Y-H, Liao L-T (2013) An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans Circuits Syst Video Technol 23(7):1109–1118

    Article  Google Scholar 

  35. Qin C, Chang C-C, Hsu T-J (2015) Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimed Tools Appl 74(15):5861–5872

    Article  Google Scholar 

  36. Qin C, Chang C-C, Lin C-C (2015) An adaptive reversible steganographic scheme based on the just noticeable distortion. Multimed Tools Appl 74(6):1983–1995

    Article  Google Scholar 

  37. Qin C, Chen X, Ye D, Wang J, Sun X (2016) A novel image hashing scheme with perceptual robustness using block truncation coding. Inf Sci 361:84–99

    Article  Google Scholar 

  38. Qin C, Ji P, Zhang X, Dong J, Wang J (2017) Fragile image watermarking with pixel-wise recovery based on overlapping embedding strategy. Signal Process 138:280–293

    Article  Google Scholar 

  39. Rabie T (2007) Frequency-domain data hiding based on the matryoshka principle. Special Issue on Advances in Video Processing and Security Analysis for Multimedia Communications, Int J Adv Media Commun 1(3):298–312

    Google Scholar 

  40. Rabie T (2012) Digital image steganography: an fft approach 4th international conference on networked digital technologies (NDT). Springer, Berlin, pp 217–230

  41. Rabie T (2013) High-capacity steganography. In: 6th international congress on image and signal processing (CISP), vol 2, pp 858–863

  42. Rabie T, BaziyadM, Bonny T (2018) Toward a unified performance measure for steganography systems. Multimed Tools Appl, submitted

  43. Rabie T, Baziyad M (2017) Visual fidelity without sacrificing capacity: an adaptive laplacian pyramid approach to information hiding. J Electron Imaging 26(6). https://doi.org/10.1117/1.JEI.26.6.063001

  44. Rabie T, Kamel I (2016) On the embedding limits of the discrete cosine transform. Multimed Tools Appl 75(10):5939–5957

    Article  Google Scholar 

  45. Rabie T, Kamel I (2017) High-capacity steganography: a global-adaptive-region discrete cosine transform approach. Multimed Tools Appl 76(5):6473–6493

    Article  Google Scholar 

  46. Rabie T, Kamel I (2017) Toward optimal embedding capacity for transform domain steganography: a quad-tree adaptive-region approach. Multimed Tools Appl 76(6):8627–8650

    Article  Google Scholar 

  47. Rabie T, Kamel I, Baziyad M (2017) Maximizing embedding capacity and stego quality: curve-fitting in the transform domain. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-4727-5

  48. Singh AK, Dave M, Mohan A (2015) Multilevel encrypted text watermarking on medical images using spread-spectrum in dwt domain. Wirel Pers Commun 83(3):2133–2150

    Article  Google Scholar 

  49. Singh AK, Dave M, Mohan A (2015) Robust and secure multiple watermarking in wavelet domain. J Med Imaging Health Inform 5(2):406–414

    Article  Google Scholar 

  50. Singh AK, Kumar B, Dave M, Mohan A (2015) Multiple watermarking on medical images using selective discrete wavelet transform coefficients. J Med Imaging Health Inform 5(3):607–614

    Article  Google Scholar 

  51. Singh AK, Dave M, Mohan A (2016) Hybrid technique for robust and imperceptible multiple watermarking using medical images. Multimed Tools Appl 75(14):8381–8401

    Article  Google Scholar 

  52. Singh AK, Kumar B, Singh SK, Ghrera SP, Mohan A (2016) Multiple watermarking technique for securing online social network contents using Back Propagation Neural Network. Future Generat Comput Syst, Elsevier. https://doi.org/10.1016/j.future.2016.11.023

  53. Song W-J, Pearlman W (1988) Edge-preserving noise filtering based on adaptive windowing. IEEE Trans Circ Syst 35(8):1048–1055

    Article  Google Scholar 

  54. Streijl RC, Winkler S, Hands DS (2016) Mean opinion score (mos) revisited: methods and applications, limitations and alternatives. Multimed Syst 22(2):213–227

    Article  Google Scholar 

  55. Swain G, Lenka SK (2014) Classification of image steganography techniques in spatial domain: a study. Int J Comput Sci Eng Tech (IJCSET) 5(3):219–232

    Google Scholar 

  56. Tang M, Hu J, Song W (2014) A high capacity image steganography using multi-layer embedding. Optik-Int J Light Electron Opt 125(15):3972–3976

    Article  Google Scholar 

  57. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  58. Yang B, Schmucker M, Funk W, Busch C, Sun S (2004) Integer DCT-based reversible watermarking for images using companding technique. In: Security, steganography, and watermarking of multimedia contents VI, vol 5306, pp 405–416. International Society for Optics and Photonics

  59. Yu W (2015) The lsb-based high payload information steganography. Methods 1(2):2

    Google Scholar 

  60. Zear A, Singh AK, Kumar P (2016) A proposed secure multiple watermarking technique based on dwt, dct and svd for application in medicine. Multimed Tools Appl 1–20. https://doi.org/10.1007/s11042-016-3862-8

  61. Zear A, Singh AK, Kumar P (2018) Multiple watermarking for healthcare applications. J Intell Syst

  62. Zear A, Singh AK, Kumar P (2017) Robust watermarking technique using back propagation neural network: a security protection mechanism for social applications. Int J Inf Comput Secur 9(1–2):20–35

    Google Scholar 

  63. Zhang L, Zhang L, Mou X, Zhang D (2011) Fsim: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhang X, Sun Z, Tang Z, Yu C, Wang X (2016) High capacity data hiding based on interpolated image. Multimed Tools Appl 76(7):9195–9218

  65. Zielińska E, Mazurczyk W, Szczypiorski K (2011) Development trends in steganography, vol 15. Warsaw University of Technology, Institute of Telecommunications Warsaw, Poland, p 19

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable suggestions that contributed to the improvement of the original manuscript. Thanks also goes to those colleagues whose suggestions helped the overall presentaiton of this paper. This work was funded by the College of Graduate Studies and Research at the University of Sharjah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Rabie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabie, T., Baziyad, M. & Kamel, I. Enhanced high capacity image steganography using discrete wavelet transform and the Laplacian pyramid. Multimed Tools Appl 77, 23673–23698 (2018). https://doi.org/10.1007/s11042-018-5713-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5713-2

Keywords

Navigation