Skip to main content
Log in

On the embedding limits of the discrete cosine transform

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper investigates the embedding capacity limits of high-capacity data hiding in color images based on a locally Adaptive-Region Discrete Cosine Transform (AR-DCT) frequency domain data hiding scheme, and explores the relationship between hiding capacity and image quality. It also compares the embedding capacities of various steganography schemes which have been recently published in the literature. Experimental results confirm that our proposed scheme successfully enhances hiding capacity while maintaining acceptable image quality and concludes that the capacity for our DCT hiding scheme can achieve extremely high bit rates of 20 bits-per-pixel, which is much higher than other DCT-based approaches, as well as other spatial and frequency domain schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. 1 For JPEG standard the block size m×m is 8×8

References

  1. Ahmed N, Natarajan T, Rao K (1974) Discrete cosine transform. IEEE Trans Comput 23(1):90–93

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson RJ, Petitcolas FA (1998) On the limits of steganography. IEEE Journal on Selected Areas in Communications 16(4):474–481

    Article  Google Scholar 

  3. Brisbane G, aini RSN, Ogunbona P (2005) High-capacity steganography using a shared colour palette. IEE Proc, Vis Image Signal Process 152(6):787–792

    Article  Google Scholar 

  4. Castleman K (1996) Digital Image Processing. Prentice Hall, Upper Saddle

    Google Scholar 

  5. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  6. Chan CK, Cheng L (2004) Hiding data in images by simple LSB substitution. Pattern Recog 37:469–474

    Article  MATH  Google Scholar 

  7. Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon jpeg and quantization table modification. Inform Sci 141:123–138

    Article  MATH  Google Scholar 

  8. Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon jpeg and quantization table modification. Inform Sci 141(1):123–138

    Article  MATH  Google Scholar 

  9. Chang CC, Chen YH, Lin CC (2008) A data embedding scheme for color images based on genetic algorithm and absolute moment block truncation coding. Soft Comput 13:21–331

    Google Scholar 

  10. Chang CC, Hsiao JY, Chan CS (2003) Finding optimal least-significant-bit substitution in image hiding by dynamic programming strategy. Pattern Recog 36 (7):1595–1683

    Article  Google Scholar 

  11. Chang CC, Lin CC, Tseng CS, Tai WL (2007) Reversible hiding in dct-based compressed images. Inform Sci 177:2768–2786

    Article  Google Scholar 

  12. Chang CC, Tai WL, Lin CC (2006) A reversible data hiding scheme based on side match vector quantization. IEEE Trans Circuits and Systems for Video Technology 16(10):1301– 1308

    Article  Google Scholar 

  13. Chen B, Wornell G (2001) Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Trans Inf Theory 47(4):1423–1443

    Article  MathSciNet  MATH  Google Scholar 

  14. Chung KL, Shen CH, Chang LC (2001) A novel svd- and vq-based image hiding scheme. Pattern Recogn Lett 22(9):1051–1058

    Article  MATH  Google Scholar 

  15. Curran K, Bailey K (2003) An evaluation of image based steganography methods. International Journal of Digital Evidence 2(2):1–40

    Google Scholar 

  16. IEC I (1994) Information technology-digital compression and coding of continuous-tone still images: Requirements and guidelines. Standard, ISO IEC pp 10,918–1

  17. Iwata M, Miyake K, Shiozaki A (2004) Digital steganography utilizing features of jpeg images. IEICE Trans Fundamentals E87-A(4):929–936

    Google Scholar 

  18. Jain A, Uludag U, Hsu R (2002) Hiding a face in a fingerprint image. In: Proceedings of the International Conference on Pattern Recognition (ICPR). Quebec City, Canada

  19. Lee Y, Chen L (2000) High capacity image steganographic model. IEE Proc, Vis Image Signal Process 147(3):288–294

    Article  MathSciNet  Google Scholar 

  20. Lin CC, Shiu PF (2009) Dct-based reversible data hiding scheme. In: Proceedings of the 3rd International Conference on Ubiquitous Information Management and Communication (ICUIMC09), pp 327–335

  21. Lin CC, Shiu PF (2010) High capacity data hiding scheme for dct-based images. Journal of Information Hiding and Multimedia Signal Processing 1(3):220–240

    Google Scholar 

  22. Lin CY, Chang CC, Wang YZ (2008) Reversible steganographic method with high payload for jpeg images. IEICE Trans Inf Syst 91-D(3):836–845

    Article  Google Scholar 

  23. Marvel LM, Charles G, Boncelet J, Retter CT (1999) Spread spectrum image steganography. IEEE Trans Image Processing 8(8):1075–1083

    Article  Google Scholar 

  24. Nozaki K, Niimi M, Eason RO, Kawaguchi E (1998) A large capacity steganography using color bmp images. In: ACCV ’98: Proceedings of the Third Asian Conference on Computer Vision-Volume I, pp 112–119. Springer-Verlag, London

  25. Pavlidis G, Tsompanopoulos A, Papamarkos N, Chamzas C (2003) Jpeg2000 over noisy communication channels thorough evaluation and cost analysis. Signal Process Image Commun 18(6):497–514

    Article  Google Scholar 

  26. Petitcolas FA, Anderson RJ, Kuhn MG (1999) Information hiding-A survey. Proc IEEE 87(7):1062–1078

    Article  Google Scholar 

  27. Provos N, Honeyman P (2003) Hide and seek: An introduction to steganography. IEEE Computer Society

  28. Rabie T (2007) Frequency-domain data hiding based on the matryoshka principle. Special Issue on Advances in Video Processing and Security Analysis for Multimedia Communications. International Journal of Advanced Media and Communication 1(3):298–312

    Article  Google Scholar 

  29. Rabie T (2012) Digital image steganography: An fft approach. In: 4th International Conference on Networked Digital Technologies (NDT), pp 217–230. Springer Verlag

  30. Rabie T (2013) High-capacity steganography. In: 6th International Congress on Image and Signal Processing (CISP), vol 2, pp 858–863

  31. Rao K, Yip P (1990) Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press, ISBN 0-12-580203-X, Boston

    Book  MATH  Google Scholar 

  32. Rodrigues J, Rios J, Puech W et al (2004) Ssb-4 system of steganography using bit 4. In: 5th International Workshop on Image Analysis for Multimedia Interactive Services

  33. Solanki K, Jacobsen N, Madhow U, Manjunath BS, Chandrasekaran S (2004) Robust image-adaptive data hiding using erasure and error correction. IEEE Trans Image Process 13(12):1627–1639

    Article  Google Scholar 

  34. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits and Systems for Video Technology 13(8):890–896

    Article  Google Scholar 

  35. Tsai P, Hu YC, Chang CC (2002) An image hiding technique using block truncation coding. In: Proceedings of Pacific Rim Workshop on Digital Steganography, pp 54–64

  36. Wang X, Yao Z, Li CT (2005) A palette-based image steganographic method using colour quantisation. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp II – 1090–3

  37. Wu M, Liu B (2003) Data hiding in image and video: Part I - fundamental issues and solutions. IEEE Trans Image Process 12(6):685–695

    Article  Google Scholar 

  38. Yang B, Schmucker M, Funk W, Busch C, Sun S (2004) Integer dct-based reversible watermarking for images using companding technique. In: Proceedings of the SPIE 5306, Security, Steganography, and Watermarking of Multimedia Contents. vol 6 (405)

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable suggestions that helped improve the original manuscript. This work was funded by the College of Graduate Studies and Research at the University of Sharjah under project number 140440 for 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Rabie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabie, T., Kamel, I. On the embedding limits of the discrete cosine transform. Multimed Tools Appl 75, 5939–5957 (2016). https://doi.org/10.1007/s11042-015-2557-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2557-x

Keywords

Navigation